MILLERS GRAPHICS
1475 W. Cypress Ave.
San Dimas, CA 91773

@%%gLIMF“>QBﬁ@

'u,,s.h

ACH L‘?VMOVBM*R13 R9

'ABZ

}lg{ﬁr *"’*MOVB R9 Rll'
e, TISRLS Ris, 12
SRR BE T *RE
AV R RE
}H:‘““ ﬁMOV R9 R5

Eijﬁigﬁ AND[R5,>0100

W1 Bl @AO
"kj%jﬂwwSWPB Ry
w,?ﬂ*ﬂfmov ‘R1,R3
% %ﬁ*f MOV “R@,R2
o - R9.>A000
AP

i@gﬁg coc - @AQ.,R9

3 . : ivfrn;l.j NE AR |
f;;g%ﬁjamov ‘R13,R1
f#f}xﬁﬁgMOVB”*R1 RO

.\:!.- . "-:L-.;- I : .:‘-\. ! -:.E.l- 4 :.
-,ﬂ:ﬁ; ‘L;ﬁ‘ f..;-’- o @ AS
}f"}?w‘ "“,i-gi‘-‘-i:.)é't .

1# Sr g

P ._lq__."'-\.\,,! &

ST MOV, BANGRM) RS"

>0308.,>0002
_>63@B,>ﬂﬁﬁﬂ-
«>025D
*-5>1195,_,¢
D189

>A9CY

>C164, >l636

>P455
>P4ChL
>C149
>@2L45,>0100
>P6ARG, >GTTA
>B6CH
>CBCT

>89

>0289,>A000

> 1A49
_>226B;}933@

> 168C
>Ca4D

LE>D@11~7
>P681

>P6AD, >ﬁ?AAf

->1088

MANUAL WRITTEN BY

R, KENT THOMSON

IN COLLABORATION WITH

THOMAS S. FREEMAN

r._i:_.[._.-__ir . “I!;:',‘I..}'I

DISKASSEMBLER VER. 2.0 - FOR GENEVE 9640

-_--p——--_—.-_— ——-ﬂr--l-———-—““--——-_#-__—— il s oy
e k"3 R | —““_—___-—_-_-_-—“-—-—_— L

ADDENDUM
NOTE: DISKASSEMBLER Ver. 1 Copyright 1986 by Miller

Graphics. DISKASSEMBLER Ver., 2 Copyright 1988 by T and J

Software. Please direct all correspondence to T and J
goftware, 515 Alma Real Drive, Pacific Palisades, CA 90272
(213) 454-1943. |

Version 2.0 of DISKASSEMBLER has been extensively
rewritten and expanded to take advantage of the added memory
and capabilities of the 9640. This addendum outlines the
differences and additions of Ver. 2, and refers to page
numbers in the original manual, which is included with <the
purchase of the program. :

OADING/RUNNING DISKASEMBLER (PF -

Please ignore all information on these pages. The name of
the program as supplied on disk is DKA, and there 1is no

- DISCONFIG file. DISKASSEMBLER can e freely moved to any
device, and can be renamed as you wish. DISKASSEMBLER can be

loaded only from MDOS mode and there must be 128K available
free memory (type CHKDSK to determine how much you have). In
Ver. 1.06 — 1.08 of MDOS, TIMODE must be off.

The default for color is found in the second sector of the
first file in the ASCII sequence 07F4 - F4 can be changed to
any color combination you wish with a sector editor. The cycle
through other combinations is still effective. The defaults
for options and printer name are in the third sector. If you
change these, be sure to change the length byte in hex that
precedes the ASCII characters, if it differs. The options
list, F7 printer output, and F8 output file can also be loaded
in along with a REF/DEF table (see below). Note that the
default options in the program as delivered are A, R, and K
(see below for explanation of these).

GENERAL INFORMATION (PP, 4-6)

This remains generally unchanged. In particular, note
that you must have available disk space 1n formatted floppies
or hard or ram disk. Disassembly of large files could create
as much as 2500 sectors of output files!

DISKASSEMBLER Ver. 2 Addendum p. 1

o ——e s

SPECIAL LOADERS

Four major new ways of loading files/information have been
added to Ver. 2 of DISKASSEMBLER. They are: 1) batch (chain)
l1cad of EA5 or MDOS type files, 2) complete DIS/FIX 80 file
load into memory with RESOLUTION of external references, 3)
9640 Memory mapping, and 4) external REF and DEF tables. They
are all indicated on the input line by a : and a special code
letter as follows:

:B Chained Program Fil;s (Batch load)

DISKASSEMBLER has a complete 64K block of memory set aside
for loading of ANY file to its proper location. You signal
this by inputting the code :B and the filename of the first
file without a space in between (e.g. :BDSK1.ASSM1). The
files must of course have the standard 6 flag bytes 1in the
first sector of each (or they won't 1load in the computer
anyway), and of course each successive one must have it{s name
differ from the last by increasing the last character of the
name by one. Each is then placed in the appropriate gsection of
memory and disassembled in the order loaded. If they are
contiguous in memory the disassembly will continue
uninterrupted, but if they are not a new AORG will be written
at the appropriate time. |

Because DISKASSEMBLER disassembles one filerat a time and
uses the current range of addresses for the LABEL range, the X
option must be invoked in order to obtain consistent labels for
all the filea. Hence the X option is AUTOMATICALLY added if it
was not already there. This might produce a rather large
number of labels if there are more than two files. For this
reason DISKASSEMBLER will now produce up to 1852 labels rather
than 936. So far we have not disassembled a file that used all
of these (a 24K sample program was used). The extra labels
were produced by taking the complete set of AA to Z2Z2 and Al to
29 and adding a 1 to each (e.g. AAl.or ZS91). Please note that
RO to R9, and RO1 to R91, are no longer used, hence
DISKASSEMBLER never needs to '"delete the R option” as mentioned
on p. 29.

:L DIS/FIX 80 file loader

Files here are input similarly to the last option (e.g.
. LWDS1.0BJECTFILE). You will be asked, at the Dbottom of the
screen, where you want any RORG code to load, the choices being
0400 for MDOS, >24F4 for XBasic, or >A000 for EA or Minimem.
After you make your choice (F4 allows escape to the top. but
the only other valid keys are 0, 1, and 2) the file is loaded
into the simulated memory block. The standard EA loader is
used, with some exceptions. A check is done for available
memory for RORG code for the appropriate mode (virtually all
memory is available in MDOS) and an error issued 1if 1t 1is
insufficient. A difference from the TI however is that the
REF/DEF table is kept separately, so that XB code does not abut
against it (it still cannot go beyond >4000 however). In

DISKASSEMBLER Ver. 2 Addendum p. 2

addition, the checksum is not checked, and compressed code is
allowed in all cases. |

After the file 1is 1loaded., vyou are returned to the top
input line for another file if you wish - allowing several
programs to be loaded together. Do NCOT use the :L signal this
time. You may exit to MDOS with CTRL = at this point, catalog
a device with CTRL C (see below), or go back to the beginning
of the program with F4. As with the EA Load and Run option,
you 8ignal the end by erasing the input line and pressing
ENTER. At this point all REF's will be resoclved - the major
advantage of Ver. 2 of DISKASSEMBLER. For this reason you
MUST have a REF/DEF table loaded containing all the necessary
REFs (gee below for this). If you do not load a REF/DEF table,
or one is not present from a previous use, a default table
identical to the one contained in the EA module WILL be loaded
for you from memory even if the K option 1is present. Thus an
EA type file, with standard REF's, will not require you to load
in a file. The program disk should contain this table in a
special file anyway, in case you wish to add to it, as well as
an XB file containing all the equates as listed in the . EA
manual. If these two files are not pregsent., they will be
uploaded shortly to the major information services.

At this point., assuming all REF's have been resolved, yocu
may proceed to the rest of p. 1. The '"Loads at :" value will
be the first address that was loaded. In contrast to the-
standard 1line Dby line disassembler used in Ver. 1 ‘(and still
contained in Ver. 2 although you probably will not use it
except to check a file for REFs) the REFs and DEFs are NOT
listed at the end of the disassembly. Only the AUTO ° START
address, if any. will be given. |

M Memnrz Mappear

DISKASSEMBLER provides you with the ability to disassemble
ANY physical page present in the 9640. Just input :MXX or
:MXXYY, where XX and YY are hex numbers (e.g. 3F or FD) and
these pages will be mapped into memory for disassembly. The

"Loads at " address will be D>A000 by default, since
DISKASSEMBLER has no way of knowing what address the page 1s
actually at. If you know it then you can change this value.

Play with this - eventually you can find all of MDOS.
3R _REF/DEF File Loader

This is the loader that allows you to load in any REF/DEF
table that you create. Input it similarly to those above (e.g.
:RWDS1.REFFILE). This must be a DIS/VAR 80 file and each line
must contain one equate or REF. The name (maximum 6
characters) must precede the address, which must be in hex and
must have two bytes (four ASCII characters). The word "EQU" 1s
optional between these two, as is the > before the hex number.
Extra spaces before or after each item are ignored (but there
must be at least one). All of the following are valid entries:

DISKASSEMBLER Ver. 2 Addendum p. 3

AARA 1234
BBBB EQU ABCD
CCCC >89AR
DDDD EQU >FFFE

Please note that because of the way that DISKASSEMBLER handles
the REF/DEF table (it searches until it finds an address that
is >0000) do NOT include a REF which is >0000 in your table,

- In addition, this file can contain defaults for the
options 1list, printer name, and output file name. These three
are signalled with a * and a number 0-2 at the beginning of the

line (0 - options, 1 ~ printer, 2 - output file). The
following is an example:
*Q XVZ

*1 RS232.BA=9600.DA=8
*2 WDS1.DISASSEM.DUMPA

When the load is done, you are returned to the top input

'line and may now type a file name for disassembly.

INPUT

When vyou are entering a file name for any disk device you
may use MDOS's logical descriptors for the device name 1f you
wish (e.g. A:ASCM1). Full path names are allowed such as
WDS1.WRITER.DOCS - which could also be expressed as
E:WRITER.DOCS - with a 1limit of 40 characters total. As in
entry from MDOS command line, you may also omit the device name
altogether if the file is on the currently defined path.

Four special key presses have been added when you are on
an input line. The TAB key will position the cursor at - the
position after the next PERIOD following the current position.
This is convenient when typing in hard disk files with long
pathnames and several subdirectories. CTRL E will place the
cursor in the first SPACE following its current position. CTRL

S will place the cursor at the beginning of the input line,
without erasing the input.

Note that the Page Up, Page Down, Insert, and Delete Kkeys
have the same functions as F6, F4, F2, and Fl respectively.
There is no equivalent for F9.

CAIALQG

Finally, CTRL C will produce a full catalog of any input
device (a new screen will appear that requests the device).
You may enter the name with or without the period at the end,
or a single number x for a DSKx device. In addition, you may
use MDOS's logical device names (e.g. E: or E:WRITER.) and of
course full path names are allowed to any subdirectory level.

The output contains up to 66 files and subdirectories in
three columns per screen: all files are printed together before
the aubdirectories. The usual information is given (but not

DISKASSEMBLER Ver. 2 Addendum p. 4

the time/date stamps) in an abbreviated fashion. F4 and F6
will cycle through the pages if there are more than one, in a
circular manner, i.e. first page after last page. The maximum
number of pages is 4 (127 files and 114 subs). Press ENTER to
escape back to the input line for CATALOG and F4 or F9 (or
ENTER if the line is blank) to get back to wherever you were.

A certain strange behavior will be exhibited under certain
conditions in the use of this routine. The first person to
describe this to us will receive a free copy of a T and J
Software product.

Other File Information

The only other changes on p. 1 are that the "Type" will
inform you of the special loaders., and that "Sectors" has been
replaced by "Bytes-Dis:" i.e. that actual number of bytes to
be disassembled. This will differ by 6 from the file length
with a standard loading file.

QPTIONS

Several options have been added and two deleted. The M
and G options are no longer necessary since they were needed
for different DSR's and the 9640 takes over all of them. Thus
the file size information that DISKASSEMBLER needs is always

available. Note that you can still disassemble the original
card DSR's as DISkASSEMBLER properly pages them in. D is still
used for this. The R, T and B options operate normally.

The X option has been modified to allow you to choose the
exact extended label range that you wish. Thus you can avoid
the low numbers that are unlikely to be addresses and are
probably real numbers. When the batch load or special DIS/FIX
80 loader are used, the Xtended label range -is automatically
invoked, and the values are automatically set for you to the
highest and lowest used by the program (there may be very large
gaps in Dbetween, as with ASSM1 and ASSMZ which load at >2000
and >A000 respectively). It is probably best to leave these
values as is, but in some cases a program may set up buffers
outgide of the loaded address range, and these would not create
labels unless the range is extended further.

| The V option operates as before, but you probably will not
use it, since its purpose was to avoid the two word DATA blocks
for BLWP's when they were REF'd, and this is the reason for the
special loader that resolves REFP's.

The following options have been added: K, A, S, 2, E

K _OPTION

The default EA REF/DEF table will! be loaded and wusged
unless this option is present. If your file is an EA one., this
is useful, otherwise you will probably not want the default as

DISKASSEMBLLER Ver. 2 Addendum p. S

confusing labels will be inserted. For this reason 1t 1s
present in the default options.

A _QPTION

DISKASSEMBLER Ver. 1 did not display the 6 flag bytes 1in
a standard loading program file. Since you may wish to examine
these anyway, they will be displayed as DATA if the A option 1is

invoked. They are placed before the first code actually
disassembled and the start address i1s adjusted to compensate.
2 QPTION

DISKASSEMBLER Ver. 1 created 64 sector files for output,
and the number c¢ould add up. Since MY-Word can accept much
larger files, DISKASSEMBLER Ver. 2 creates 128 sector files by

default,., If you invoke the S option however, Small files of 64
sectors will be created instead.

L OPTION

Some program files will contain large unused areas of
memory that correspond to a BSS in the original object file.
If they were loaded into a freshly initialized computer and
then saved as a Dblock all the data will look the same (e.g.
ASSA, 0000, ESES, etc.) DISKASSEMBLER Ver. 2 will count these
and if they exceed 10 identical words in a row will CREATE a
DATA/TEXT block for them and continue the block until the data
changes. Up to 30 such Dblocks can be created. This saves
gquite a number of lines in the final printout. The 2 option,
if 1invoked, will in addition, skip printing them altogether 1if
the block is 240 bytes or larger, and assign a new AORG to the
next different data.

E_OPTION

There exist quite a number of XBasic files that contain
some or mostly hidden assembly language files (as done with
Barry Traver's ALSAVE method). Because of the way that XB
files are saved to disk the assembly code <can sometimes be
offset by one byte on the disk sectors. [The assembly code is
properly loaded on even addresses, but the program 1s saved on
disk from the bottom up, and if the XBasic code contains an odd .
number of bytes, the assembly code will be offset by one.]
DISKASSEMBLER loadse the code as it finds it on the disk,
because it is word oriented, and hence the disassembly will
make no sense whatsoever. Invoking the E option will move the
entire block of data down one byte, so that the assembly
portion will reside on word boundaries.

PAGES TWO & THREE

The remainder of the information in the manual up through
p. 15 remains the same. The entries for pages 2-3 also are the
same, wWith the following exceptions. There are now 30 blocks
allowed on each page rather than just 15. All values input on

DISKkASSEMBLER Ver. 2 Addendum p. 6

a previous disassembly are now preserved when you reach this

page, which is useful if you are re—doing the same file. If
you wish to erase all inputs at once and replace them with
0000, you may press F5 on either of these pages. Also note

that CTRL C for catalog is not active here. The rest of the
information on how to use the data following subroutines
remains valid.

PAGE FOUR AND DISASSEMBLY PASSES

The instructions for PAGE FPFOUR on pp. 19-20 remain the
same. Added. however, is the ability to catalog wvia CTRL C.
The function keys during PASSES are the same except that CTRL C
can be used, and F5 is no longer valid (the screen 1s 1in 80
columns and toggling screen halves is not needed).

IMPORTANT NOTE: Until MDOS Ver. 1.1xH is released do NOT
do an F8 dump to hard disk - it will lock up the computer.

The number of labels possible, méntioned on pp. 2% and 27,
has been increased to 1832.

REASSEMBLY PP. 28-33

These instructions remain the same.'except that the method
of hand resolving REF's on pp. 30-31 will not be necesgsary if
you use the special loader that resolves them.

NOTE: The instructions DIVS, MPYS, LST, and LWP, which are
valid for the 9995 processor, may be produced by the program.
They will produce an error with the TI 99/4A Assembler, and
should be replaced by DATA if you are re—assembling with that
assembler. John Johnson has uplcaded to GEnie an assembler
provided by Paolo Bagnaresi which will handle these properly -

it will probably appear on the other information services as
well.

DISKASSEMBLER Ver. 2 Addendum p. 7

NOTE: This page duplicates p. 54 of the manual, which must be
returned by those who are updating DISKASSEMBLER Ver. 1

Appendix D — Common Equates and Subroutines Continued

Common Subroutine (BLWP) Addresses and
Number of Data Words that follow them:

Name E/A Add XB Add MM Add ﬁo. Words
POWER UP >0000 >0000 >0000 >0000
NUMASG n/a >2008 >6040 >0000
NUMREF n/a >200C >6044 >0000
STRASG n/a »>2010 >6048 >0000
STRREF n/a >2014 >604C >0000
XMLLNK >2104 52018 >601C >0001
KSCAN >2108 >201C >6020 >0000
VSBW >210C >2020 >6024 >0000
VMBW >2110 >2024 >6028 >0000
VSER >2114 >2028 >602C 50000
VMBR >2118 5202C >6030 >0000
VWTR >211C >2030 >6034 >0000
ERR n/a >2034 >6050 >0000
GPLLNK >2100 n/a >6018 -~ >0001
DSRLNK >2120 n/a >6038 >0001
LOADER >2124 n/a >603C >0000

NOTE: The E/A's NUMASG, NUMREF, STRASG, STRREF, and ERR
subroutines are in the file called BSCSUP on the E/A disk..
This file is an RORG file so their addresses are
relocatable and vary according to where the file is loaded.

DISKASSEMBLER Ver. 2 Addendum p. 8

T AND J SOFTWARE — LIMITED WARRANTY

T AND J SOFTWARE WARRANTS DISKASSEMBLER VER. 2, WHICH IT
MANUFACTURES, TO BE FREE FROM DEFECTS 1IN MATERIALS AND

WORKMANSHIP FOR A PERIOD OF 90 DAYS FROM THE DATE OQF
PURCHASE.

DURING THE 90 DAY WARRANTY PERIOD T AND J SOFTWARE WILL
REPLACE ANY DEFECTIVE PRODUCT AT NO ADDITIONAL CHARGE,
PROVIDED THE PRODUCT IS RETURNED, SHIPPING PREPAID, TO T
AND J SOFTWARE. THE PURCHASER IS RESPONSIBLE FOR INSURING

ANY PRODUCT SO RETURNED AND ASSUMES THE RISK OF LOSS DURING
SHIPPING.

SHIP TO:
T AND J SOFTWARE
515 ALMA ReaL DRIVE
PACIFIC PaALISADES, CA 90272

WARRANT A - THIS DISKASSEMBLER PROGRAM IS WARRANTED
AGAINST DEFECTIVE MATERIAL AND WORKMANSHIP. THIS WARRANTY
IS VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT,
UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR
OTHER CAUSES NOT ARISING OUT OF DEFECTS IN MATERIALS OR
WORKMANSHIP.

REPLACEMENT AFTER WARRANTY - AFTER THE 90 DAY WARRANTY
PERIOD HAS EXPIRED YOQU MAY RETURN ANY ORIGINAL DEFECTIVE
DISKETTE, ALONG WITH A CHECK FOR $4.00 TO COVER SHIPPING AND
DISKETTE COSTS, AND WE WILL REPLACE IT.

ADDERDUM

%

Due to some last minute enhancements to DISkKkASSEMBLER the method of
handling RORG Code has changed slightly. It now does more extensive
label checking on the First and Second Pass. This allows it to generate
labels for most everything within the address range of the code and as
such makes it easier to change RORG code into AORG or AORG into RORG or

to change the ORG for AORG code.

In a couple of places in the manual we state that you should use a

BlLoads At" address of >0000 for RORG Code.

DO NOT DO THIS - LEAVE IT AT >A000

the RORG statements. Example: . 3
To:

Change:
: RORG >A000
AA AA
| RORG >A020 ST
AB AB
RORG >AOHO |

statements.ﬁ

Example:
DATA >A020,>A3R0

relocatable. Then you should place these labels
line that these addresses point to. Example:
DATA LAB1,LAB2 '

LAB1 EQU $+>4A020->4000
LAB2 EQU $+>A4B0->A000

Then, edit the source code files that DISkASSEMBLER generates and offset

':RORG >A000f>AOQOT
P:RORG'>A020#>#DGﬁ“_;'

RORG >A0ﬁ0->k000 -
This'allows you to easily set the first RORG to >0000 (>A000-
>A000=>0000) and to keep the proper relationship between the other RORG

You should also look through the code to see if there are any RL1, RL2,
RL3 etc. notes in the fifth column wherever there are DATA statements.

RL2

This tells us that >A020 and >A4BO are relocatable addresses and as such
you should convert them into labels in order for the code to be 100¢%

at the beginning of the |

RL2

'And then at the beginning of line >A020 put LAB1 and at >ALEOQ put LAB2,
or you can add these labels to the EQU list as follows:

By using this method for RORG code, DISkKkASSEMBLER will not generate
labels for low LOAD IMMEDIATE values (i.e. LI R1,>0002) and as such it
will not create a long EQU List at the end of the file.

N MILLERS GRAPHICS o 1475 W. CYPRESS AVE. ¢ SANDIMAS,CA 91773 (714) 5989-1431

By using this same offset method you can change the ORG for AQORG code
after 1t has been disassembled and/or convert RORG to AORG or AORG to
RORG - but watch out for DATA and EQUs that reference absolute addresses
in the progran.,

MINI MEMORY CORRECTION

In the manual we stated that the Mini Memory Module will first try to
‘load RORG-code at >7118 if it will fit. This was wrong. The Mini Memory
will first place RORG code at >AQ00. If you want to load a small program
into the Mini Memory Module you will have to AORG it there. For example;
to load the SAVE Utility into the Mini Memory you will need to change
the 3 AORG statements before reassembly to:

AORG >2800->2800+>T7118
AORG >2B32->2800+>7118
AORG >2B52->2800+4>7118

This will load it into the Mini Memory and leave all of High and Low
Memory Expansion free to locad the program to be saved. This is very
handy for programs such as EDIT1, ASSM1 & 2, EDITA1 & 2 and FORMA1 & 2.

The Mini Memory module's Tagged Object Code Loader is in its ROM so it
is out of the way when loading these programs.

DISASSEHBLIHG EDIT1

If you want to disassemble the EDIT‘l file (E/A Editor) here are some
addresses that will make it easier for you. (Do not use the T optilon,
let DATA appear before TEXT since these blocks are mixed DATA and TEXT)

DATA AND TEXT BLOCKS DATA FOLLOWING SUBROUTINES3

>2000 >2012 >2BT4 >0002
>201E >207A >2BF2 >0002
>212E >2138 >2BBE >0002
>2268 >22B2 >2D76 >0001
>2416 >2h3Y >2DTA >0001
>26D2 >26FA >2DTE >0003
>2814 >283C >2D82 >0003
>29A4 >2466 >2D86 >0003
>2C50 >2C8A >34EC 0002
>2D4E >2D8A >34F2 50002
>2E10 >3014 >34FC 0002
>3032 >305E

>36AA >36FA

e T

P ——— T T = e pr—

e e TL L. . T LF IR e

—r

- im

T T NI N R,

- —ul ¥ oL im ommar

—a — e madl ko

The Information contained in this book is subject to change
without notice,

1

Millers Graphics shall not be liable for technical or
editorial errors or omissions contained herein; nor for
incidental or consequential damages resulting from the
furnishing, performance, or use of this material or product
described by this manual.

This manual contains information protected by copyright. All
rights are reserved. No part of this manual may be
photocopied or reproduced in any form without prior written
consent from Millers Graphics.

DISKASSEMBLER Software and Asscociated Manual
{Produced in the United States of America)

Copyright 1986
by

Millers Graphics
1475 W. Cypress Ave.
San Dimas, CA 91773

== ag FOTL b r

L

TABLE OF CONTENTS

Introduction to DISKASSEMBLER v eceeeevsonesnas .

Quick Reference GUIdE ...veneeevesvoosooesssnnsas
Loading/Running DISKASSEMBLER +eeesvcececcononans
Default OpLioNS civeeeconecroncnsosossrannsenssnaes

Some General Information «.eeeecesssosessasconsos

PAaBe DONE tivienecvenersensososnnosnssssnsnoescsss
Function Keys During Input ..ceveccesscasess
Disassembly From DisK .cieseeceosacsconconse
The "File Information®c.ieeessnaoncsses
OPLI0oNS (i iuineneresonnsssransaannsnscssans
Disassembly From Memoryeecescensosansss
Disassembling Device Service Routines

Pagﬂ THD - Data ﬂﬂd_TEXt Blﬂﬂkﬁ 8 4 83 8805 29 40e
Page Three - Data Following Subroutines

Page Four - Specifying Output Devices ..cveces.
Output o Printer ..ieveeevenenesnocannsones
OQULPUL Lo DISK .ivsieieinocornsasensannances

Function Keys During PaSSe€S seeevvsescnsoennnses

First PaSE- IIIIII LI B B O I L I B B RN BN BN I B B B B D R R R TR R]

Secﬂnd PEEB LB AR R RN NN NN NN NN T EEE R
REF/DEF/END LA AR LA R B O BN B B BN R BN BE BN NN B I R I R R RO R,

EQU List I-l-l-lIlIlilliiiillliillillllllli-Ill
SYmbol Table List .ueeeescecnncccacoanssssas

REaS8EMDlY sieireeenrororrserarencsnonnssssencesass
Dis/Fix 80 File Without REFS tuvieeveoencaens
Dis/Fix 80 File With REFS .vevervevrescanaeea
Program Image - Standard Loader File
Program Image - Custom Loader File
Memory DisassSembly sevieesccrssnrnaossscenes

Appendix A - Save Utility Tutorial ...eeeeveeess
Appendix B -~ Files Larger Than 48 Sectors
Appendix C = Memory Maps eeeeevsncenoncocsessssas
Appendix D - Common Equateszs & Subroutines.......

=

L N — Y
= O O =] OO

16
17

19
19
20
21

23

25
26
4
27

28
28
30
32
33
33

34
42
4y
52

Yo —mM8M8M8M™ —

Il‘\l\‘.'\"'----__,—'-"--

INTRODUCTION TO DISkASSEMBLER

DISKASSEMBLER is a program that aliows you to disassemble
assembly language object code {(referred to as code in this
manual). It is designed for use as a learning tool,
allowing the novice or experienced assembly language
programmer to investigate the techniques used in existing
code and to allow you to modify it to suit your needs.

Unlike other disassemblers code can be disassembled directly
from disk, thus the name DISkASSEMBLER, or from an area of
memory in the TI 99/4A, such as the Device Service Routines.
DISKASSEMBLER is a smart disassembler in that it will
automatically; insert labels as needed, split up Data
blocks, correctly insert Data for Subroutines and set up the
Data for BLWPs,

As code is disassembled, it can be saved on disk or printed;
simultaneocusly if you wish. Flles saved to disk can be
accessed later using the TI Editor/Assembler or TI Writer,
customized by the user, and reassembled. Or, portions can
be extracted for use in other programs.

In concert with programs like Miller Graphic's Explorer and
Advanced Diagnostices, or the Gram Kracker, you'll have the
tools you need to take advantage of the limitless
capabilities TI built into the 99/4A,

SYSTEM REQUIREMENTS
To load and run DISKASSEMBLER you must have memory

expansion, at least one disk drive, and one of the following
cartridges:

Extended Basic
Mini Memory
Editor Assembler

Jomm R LT Tleaa

OO ETIE ST

QUICK REFERENCE GUIDE

bl il i v v

Function and Control Keys During Input

i

FCTN 1 - Delete a Character

FCIN 2 - Insert a Space Character

FCTN 3 - Erase Input Line

FCTN § - Abort Back to the Top of Page One
FCTN 5 - not used

FCTN 6 - Go to the Next Input Page

FCTN T - not used

FCTR 8 - not used

FCTN
FCIN
FCTH
CTRL
CTRL

9

H - QO

Option

IR

- Back One Inpuf Page

- not used

-« not used - Quit is Turned Off

- Change Screen and Text Colors

- QUIT DISkKASSEMBLER (Top of Page One Only)

List

- Put in R before Register Number

-~ Add Basic Bias to TEXT (ASCII) Display

~ Place TEXT before DATA

- Enable DSR Disassembly

- Extend Label Checking

- Override Automatic BLWP DATA for EXTERNAL REFs

- Input/Output from/to Myarc Floppy Disk Controller
- Input/Output from/to RAM Disk or Hard Disk

Function and Control Keys During Disassembly

FCTRN
FCTN
FCTN
FCTN
FCTN
FCTR
FCTN

FCIN

FCTN
FCTN
FCTN
CTRL
CTRL

Mor——————

I = QWA W=

DATA before TEXT

- TEXT before DATA

- not active

- CANCEL Printer Qutput

~ Toggles Left and Right Screen Display
- not active

- PRINTER ON/OFF

- QUTPUT FILE ON/OFF

- ESCAPE Disassembly - Back to Top of Page One
- RETRO SCREEN CAPTURE ON/QFF

- Scroll Speed Fast/Slow

- Change Screen and Text Colors

-not actilve

LOADING/RUNNING DISkASSEMBLER

e il o i il T

Place the disk in any disk drive and follow the directions

below for the specific cartridge you are using.

LOADING FROM THE EDITOR ASSEMBLER
Select 3 LOAD AND RUN from the E/A menu and type in:
DSKx .DISKASSEM (where x = the drive no. that the
DISKASSEMBLER disk was placed in)
DISKASSEMBLER will load and auto start.

LLOADING FROM EXTENDED BASIC
Place the DISkASSEMBLER disk in drive one and select
Extended Basic from the menu, DISKkASSEMBLER will auto
load and run. Or, go intoc Extended Basic and execute
CALL INIT. Then type in:
CALI. LOAD(®"DSKEx.DISKASSEM®) and press Enter.
DISKASSEMBLER will load and auto start.

LOADING FROM THE MIRI MEMORY '
Select MINI MEMORY from the menu and then select 1 LOAD
AND RUN from the MINI MEMORY menu and then type 1n:
DSKx .DISKEASSEM {where x = the drive no. that the

DISKASSEMBLER disk was placed in)
DISkASSEMBLER Hill load and auto start.

DEFAULT OPTIONS - DISKCONFIG FILE

On the DISkASSEMBLER diskette you will find the file called
DISKCONFIG. This file contains the default colors, default
options (see "Page One®)} and the default printer name. You
can load this file into the E/A Editor or the TI-Writer
Editor and change these defaults to suit your taste. The
file will appear as follows when loaded into an Editor:

Fh
R
PIO

COLORS - The FIRST LINE in the file MUST contain the screen
and text colors you would like for DISKASSEMBLER. They are
in Hex and they follow the same color values used for text
mode in the E/A module. Examples:

FY = White on Dark Blue
17T = Black on Cyan |
15 = Black on Light Blue
FC = White on Dark Green

Mgerrm————

| m—

b g ., -

-y 2

T, YOO o,

__}m

DEFAULT OPTIONS - The SECOND LINE in the file MUST contain
the Default Options (see Page One - Options). They can be in
any order and they will appear in the "Options™ input field
when you first use DISKASSEMBLER. If you do nol want any
options then leave this line blank. Examples:

Ly

R
RM
G

PRINTER NAME - The THIRD LINE in this file MUST contain the
Default Printer name that is used when you press FCIN 7 -
Printer on Page Four or during the Passes. You can {ype in
any valid output device on this line but the name must not
be any longer than 38 characters., Examples:

P10
RS232.BA=1200.DA=8 .EC.TW
RS232/2.BA=9600.LF

— ——— SOME GENERAL INFORMATIOR

DISkKASSEMBLER - is a two-pass disassembler. This means that
the code requires two independent "looks®™ or "passes" to be
completely disassembled with labels. For each pass, you can
enter information to tell DISKASSEMBLER the specifics on how
you want the code disassembled. This information is entered
on four different screens referred to as "PAGES." You'll be
introduced to the four different Pages in the sections
coming up. "

There are two ways code may be disassembled. IYou can
disassemble machine language for its assembly language
representation {(referred to as symbolic or scurce code} or
you can accomplish what is referred to as "block"
disassembly. Block disassembly provides a listing, with
line numbers, of the existing machine code in its
hexadecimal (hex) representation along with its ASCII
equivalent., This has specific uses_ that are described
iater.

! ;
RORG or AORG CODE ~ Throughout this manual there are a
number of references to RORG or AORG CODE. When code is of
the RORG type (Relocatable Origin, Dis/Fix 80) it will be
loaded into the first available free address according to
the pointers for the module that loads it (E/A, XB or Mini
Mem). When code is of the AORG type (Absolute Origin) it
will be loaded exactly where the programmer specified and

the pointers to thé first and last free addresses will not
be adjusted by the module's loader, RORG code on the disk

contains a bias or additive value for addressing. For
example, an address reference in the file may be >00C2 this
and the RORG Tag will instruct the lcader to add >00C2 to
the start load address for this reference. So, if the file
starts to load at >A000 this reference will become >AQC2. In
AORG type files the absolute or exact address is referenced
so it would contain >A0C2 instead of >00C2 for the above
example. This is why you are instructed to use a "Loads ALT
address of >0000 for RORG code IF you want to reassemble it
as an RORG program.

OPCODE and OPERAND - These two terms are also used
throughout the manual and they. refer to the following:

OPCODE is the INSTRUCTION to be performed, i.e.
MOV, MOVB, BLWP etc¢. or an assembler directive i.e.
AORG, RORG etc,

OPERAND(s) is the memory location(s), value or
register(s) to be used by the instruction,

AA MOV R1,R2

| Operands

I
|
I Opcode
|

I

Label Field

TAG - Tags are single byte flags placed in Dis/Fix 80 Object
Code assembly files to instruct the loader how to handle the
next word{s). DISkASSEMBLER uses these Tags in the same
manner when it disassembles these files. See pages 238
through 241 in the Editor/Assembler manual for additional
information on the various Tags and their use,

L . - . - i e —

s S e et P

PAGE ONE

e i _ bl .

L

Load and run the program in the manner previously described.
After the Title Screen the following will appear on the
screen. This is the beginning or Top of Page One.

{' .

DISkASSEMBLER

---__--_.—__-—,—,----—--._-_-—.------..—---
—----“-—_——-_—-——-—ﬁ---___---—-—---__-—

DSK1.

Once DISKASSEMBLER is loaded you can remove the disk from
your drive and replace it with a diskette containing the
file you want to disassemble. If you are going to
disassemble a file to another diskette you should have a
couple of formatted diskettes ready for use. Before geoing
any further, you should know something about the function
keys active during this (the input) phase of the program.

Function and Control Keys During Input
Below are the function keys active during the input phase of
the program. They work when you are entering information on
pages 1-4. They are redefined during the disassembly or
"passes" phase of the program and you'll be reintroduced to
them later when they change,

L]
ot

FCTN 1 - Delete a Character - deletes a single character
from the current input line or field.

FCIN 2 - Insert a Character - inserts a single space
character into the current input lime or field,
characters at the very end of the input field will
be deleted. |

PCTN 3 - Erase Input Line - erases the entire input line or
field.

FCTN & - Abort Back to the Top of Page One - takes you from
any input page to the very beginning of Page One
and cancels your input, |

FCTN 6 - Proceed to the Next Input Page -~ 1instructs
DISkASSEMBLER to go to the next input page and
accept all the inputs on the current page.

FCTN 9 - Back One Input Page - instructs DISKASSEMBLER to go

to the previous input page and accept all the
inputs on the current input page.
CTRL 1 - Change Screen and Text Colors - toggles through 7
different text and screen color combinations.
QUIT DISKASSEMBLER (Only when the cursor is in the
"Ynput File Name" field on the Top of Page One)

_

DISASSEMBLY FROM DISK

When selecting files for disassembly from disk, these files
nmust be Display/Fixed 80 (Dis/Fix 80) or memory image
(Program) files. A Program file cannot be longer than 47
sectors (listed as 48 in a disk catalog) and it MUST be an
Assembly file to obtain a usable output. You must have 2 or
more disk drives (or 1 drive and another output device) to

disassemble a medium to large Dis/Fix 80 file since the file
is worked on one record at a time. If you have a single
drive system and if the Dis/Fix 80 File is small enough, you
can put it on the same diskette as the one to be used for
DISkKASSEMBLER's output. Program type files, however, are
loaded into memory before DISKASSEMBLER works on them so
they can easily be disassembled on a single drive system.

Basic and X-Basic can also store their programs in Program
format. Disassembly of these files is not recommended as the
result is noft usable in a pure assembly environment. You
could, however, disassemble them solely as DATA and Text
(block disassembly) just to see what's in the file (see page
16 for additional information on block disassembly).

After inputting the device and filename (i.e. DSK1.EDIT1)
for the file you wish to disassemble, information particular

to that file is displaved; something similar to what is
shown below:

File Information

Type : Dis/Fix 80

Code : Uncompressed

Length : >0TFA Bytes Reloc. Code
Loader : Standard

Loads at : >A000 RORG

Sectors : >00

Options : R

E/A >A000 XB >24F3F MM >7118

The last line at the bottom of the screen indicates the
default first free address that the Editor/Assembler, X-
Basic, and Mini Memory modules use for loading and executing
RORG code (Relocatable Origin code). It was placed here for
easy reference, Note that the Mini Memory module will load

the program at >7118 if it is small enough to fit in the

"Mini Mem Ram, otherwise it loads it at >A000.

e

BoAR e wgr - e

e

-2 R T T e D 1 -

)

T e EEERRRAEEREREE O

The first four lines contajin file information. The last

three allow you to change parameters that affect the way
code is disassembled. Each is discussed below.

Type

Code

Length

i

The file type is‘indicated as Dis/Fix 80 or Program
Image. Program Image files are files that contain
an EXACT copy of the memory as it appears when the
program is loaded into memory. There are no "tags"
and the origin, or load address, is absclute. It is
currently not relocatable code but it can be
converted into RORG code, upon reassembly, with
DISkASSEMBLER., This format is used in some
applications for its compactness and its faster
load times. Basic and X-Basic programs may alsc be
stored in program image format, These Basic files
can be disassembled but the result is unusable

as an assembly program.,

Dis/Fix 80 files will be compressed or uncompressed
code and Program {ype files will be memory image
code. Compressed code is stored in Hex and as the
name implies it takes up less room than
uncompressed code., It also lcads slightly faster
than uncompressed code, but it can not be loaded by
the Extended Basic object code loader. Uncompressed
code. is stored in ASCII format, each nibble of the
actual code is represented by one ASCII byte (0-F).
Since it is in ASCII it can be loaded Into the E/A
editor and/or printed out.

This can be an indication of how much room some
programs require in memory. The information is
read from the beginning of the disk file if it is
available, as in relocatable Dis/Fix 80 files, or
standard format program image files. If the code
is Dis/Fix B0 and it is all AQORG'd, the length will
be >0000 Relocatable Bytes since no value was
placed here by the Assembler. With RORG code this
value is used by the loader to determine if there
is enough free space to load the file. With Program
Image code this value is useld by the loader to
determine how many bytes to move out of VDP RAM,
where the program is first loaded, into memory
expansion. With AORG code this value is not needed
by the loader. It is possible with Dis/Fix 80 files
to have both RORG and AORG code mixed, such as the

file named FORTH. In this case the value will be
just the number of bytes of RORG code and it will

not reflect the number of bytes of AOQORG code.

Loader

Loads At

JR—

Loaders will be listed as either Standard or
Custom. Custom applies to Program Image files that
are loaded by another loader written by the
programmer, instead of the loader(s) built into the
various modules., An example of a Custom Loader file
is FORTHSAVE. All Dis/Fix 80 files and all files
that can be loaded and executed by option 5 in the
Editor/Assembler or option 3 in TI-Writer are
Standard, such as EDIT1, EDITA1, EDITAZ2, ASSMi1,
ASSM2, FORMA1, and FORMA2. Standard also indicates
that the first 3 words of a Program file contain:

1 A flag indicating whether another file follows,
>0000 or >FFFF (this word tells DISkASSEMBLER
the file is Standard. NOTE: If it is Custom and
this word is >0000 or >FFFF you will get some
strange values for "Length" and "Loads At")

2 The total number of bytes in the file (if it is
standard DISkASSEMBLER uses this for "Length®)

3 The address to start loading the fourth word at

(if it is Standard DISKASSEMBLER uses this for
"l.oads At"™)

Tells us where the beginning of the file will start
tc load and whether it is RORG or AORG. If the code
is AORG (Absolute Origin), Dis/Fix 80 or Program
type, you will see the address followed by the word
AORG on this line. If it is RORG (Relocatable
Origin), you will see >A000 followed by RORG., >A000
is the Editor Assembler module's default first free
load address in High Memory Expansion.

If the code is RORG, type in >0000 if you wish to
reassemble it as RORG. Or, type in one of the
module defaults (see bottom of screen) if you wish
Lo see how it will be located in memory when using
that module. Additional work is required for
reassembly of RORG'd code. Using >0000 will make
the job a little easier. You can relocate AORG
code to another location or convert it into RORG
code by changing the AORGs prior to reassembly.
But, be careful of the labels in the Equate list or
DATA statements that reference original addresses.

1f the code is of the Custom Loader Program type
DISKASSEMBLER will put in >A000 as the default load
address. You will need to disassemble and analyze

the Custom Loader file to find out where it really
"Loads At"™,

Vo———m—m™—————

9

= sk ~ a1 g

4 e L ke e

i e A i e —— e L -

1 W i" A melt raT —Wen Ta

[T

il

e e P bl bt B A eyl il o™ i Yo ey e M, A S |

il st il o i A i ey i el R b .

i e e 3 A

L B Ll e WYL D

3 | | |
Sectors This value will either be >00, >2F or the actual D Tells DISKASSEMBLER that you want to
number of sectors. For Dis/Fix 80 files this value disassemble a Device Service Routine. See PAGE
will always be set at >00 and it SHOULD BE left ONE - DISASSEMBLING DEVICE SERVICE ROUTINES.
there. A value of >00 tells DISKASSEMBLER to
disassemble the-file until it comes to the END OF X To extend label checking outside the file's
FILE marker. The >2F value will show up for Custom address range. This option should be used when
« Loader Program files loaded from a RAM or HARD disassembling "mixed relocatable and absolute
disk. These devices do not use the disk buffer origin®™ or "out of order origin® code and it
space in VDP RAM to store file information so will insure that labels are accurately defined
DISKASSEMBLER uses this value since it is the in the disassembled output. "How do I know if
maximum file size allowed., In this case you should there is mixed code,"™ you say? DISkASSEMBLER
set this value to 1 less than the catalog size, in will tell you at the end of the First Pass,
HEX. This is generally the only time you will need WHICH MUST BE REDONE.
to change this value.
You may also want to use the option if you are
For Standard Loader Program files loaded from any disassembling a program that is contained in
device and for Custom Loader Program files loaded more than one file, i.e. ASSM1 or ASSM2, This
from a floppy disk this value will reflect the size will instruct DISKASSEMBLER to generate a
of the file. In this case you can change it if you label and Equate list, on the Second Pass, for
want to disassemble just a portion of the file. any references to the other file., However, it
However, DO NOT set it to >00 for these file types, is not needed for proper reassembly since
since they do not contain an END OF FILE marker! DISkASSEMBLER will generate the correct
address in the operand field instead of a
Options There are eight options - you can select. When label.
selecting options, type the capital letters
corresponding to the options you want consecutively v This option overrides the automatic insertion

with no separators (spaces or commas). All options
can be used at once and may appear in’ any order.

R Generates an 'R' before the régister number in
the output. In operations where registers are
used, the 'R!' is optional. This . is correct in
either case and is up to the programmer.
However, if the code has been disassembled
using this option, you must select the R
option from the E/A when reassembling.

B For use with code that includes basic bias. If
the code you are disassembling has text that
it passes to basiec, that is then displayed, it
requires the addition of a screen bias (>60).
Using this option adds the bias to the ASCII
representation of the code in the output so
you can read the text. This is rare and it is
not needed for reassembly,

T Prints TEXT first in block disassemblies.
Block disassembly is discussed further in the
section on PAGE TWO - DATA AND TEXT BLOCKS.

10

i

¥

of DATA statements for BLWPs. It MUST BE
turned on at the beginning of the Second Pass
when routines are branched to using BLWP and
the locations are REF'd, which will show up at
the end of the First Pass. This includes
DSRLNK, GPLLNK, KSCAN and the VDP utilities
such as VWTR, VMBW, and any routines contained
in a separately loaded file.

In a non-REF'd file the the operand field of a
BLWP points to an address that contains 2
words of data; the workspace for the routine
and the start address. Without the V option
DISkASSEMBLER will automatically track up to
15 of these pointers and treat the 2 words
that they point to as as DATA, In a REF'd
file the address pointed to by the operand is
the address of the previous REF'd statement in
the REF chain and not the actual 2 words of
data. After the file is locaded the Tagged
Object Code loader uses these pointer chains
to resolve the External REFs found in a file.
See Reassembly for more info.

b

11

"'I
]

MR, .

NOTE: The following M or G options should be
in your default parameters file, DISKCONFIG,
since they are used by DISkASSEMBLER when the
input file 1s opened and this happens before
you have the oppertunity to change them. If
they are not in your default file or if you

. want to change them, tell DISKASSEMELER to
disassemble memory by inputting a null file
name, change them, press FCTN 9 and then type
in your file name. AFTER the input file 1is
opened, you should change the M or G if the
output file will be to a different device,
(i.e. Input from a Myarc floppy and then
output to a Ram Disk}. On input these options
tell DISkASSEMBLER where to get the M"File
Information™, on output they tell it where to
get the information it needs to split up the
output into 65 sector files.

M Signals the use of a Myarc floppy disk
controller as the input or output device.
Unfortunately, this controller does not follow
the TI standard for placement of file
information in VDP and/or Scratch Pad Ram so
DISkASSEMBLER must look elsewhere for it.
Placing the M option in your defaulf file
instructs DISkASSEMBLER where to look for this
information. 4

G Signals the use of a RAM disk or Habrd disk for
input or output and overrides the M nptiun.
These devices do not use the disk buffgr space
in high VDP Ram to store information on the
file just opened so DISKkASSEMBLER must use a
different method of obtaining this
information., This is especially important for
Custom Loader Program files. If you do not
specify the G option on this file type you
will get an incorrect "Length" and incorrect
"Sectors™ and the file will NOT disassemble

properly.

NOTE: The M or G option must be enabled BEFORE the -
input file is opened and/or changed to match the
output device. The X option must be enabled BEFORE
the First Pass since labels are actually resolved
on this pass. The R, B, T and V options can be
enabled on either the First or Second Pass.

Me————mF

DISASSEMBLY FROM MEMORY

When the prompt ®"Input File Name or Null for Memory®
appears, use FCTN 3 to erase "DSK1." and then press ENTER.
The "File Information™ will appear as shown below:

File Information

Type : Disassemble Memory
Code :

Length : >

Loader :

Loads at : >

Sectors : >

Options : R

Start + 20000
Finish = 20000

The cursor will appear over the R option to allow selection
of additional options. Pressing Enter will move it down so
you can select hex values for Start and Finish to specify
the range of memory you wish to disassemble. The allowable
range 1is >0000 through >8000 and >A000 through >D00O.
However, DISKASSEMBLER uses >3000 through >3FFF in low
memory expansion as a buffer area, s0 you will get sone
strange results if you disassemble this secticon of memory.

NOTE: If you specify a Start or Finish address that is not

in the allowable range, DISkASSEMBLER will not accept it
and it will return you back to the Top of Page One,

ALSO NOTE: The "Finish" address is NOT inclusive. So,
inputting >0000 for the "Start®™ and >2000 for the "Finish"
will actually disassemble >0000 through >1FFE, since 9900
assembly code must be on even word boundaries,

13

-

i el urral=-irle—————re————— e Y o —

1
¥
DISASSEMBLING DEVICE SERVICE ROUTIKES (DSRs)

L Ml L el iy Ailinlan

The Standard CRU addresses and devices assigned by TI are

shown below. Your system may contain other third party cards
that have their own CRU Base.

Place DISKASSEMBLER in the "Disassemble Memory" mode and

place a D in the option 1ist. Next specify an address range | CRU Base

Assigned Device Your System

e e el o TR S it o e . e e Bl L = . il s b LT s, b e e

e Ml o o i e i e oy ki 3 W Y 147 e ™ o T Y bt i i ST AL il i e Y 5 Wt st Y e e il Bt e

in the DSR space of >4000 through >6000. Before
disassembling a DSR, you must turn it on by entering its

results may occur and you may lock up your console. This may
happen because these lower CRU Bases are used internally by
the console. Also, if you have the Myarc Ram disk,
specifying CRU Base values of >1002, >1004, >1006 ete. will
cause the card to do a 32K bank swap and lock up
DISkASSEMBELER.

! >0000 Internal console use
Communication Register Unit (CRU) base address. A prompi S0400 Unassigned
for the CRU Base will appear at the bottom of Page One if
you have specified the D option and a start address between 31000 RAM disk or hard disk
>}000 and >6000, Example for the RS3S232 Card: (Some can be changed)
File Information >1100 Floppy disk controller
>1100 & >1116 Bank 2 - CorComp
Type : Disassemble Memory >1100 & >1106 Bank 2 -~ Myarc
Code :
Length 2 > >1200 Internal modem
Loader :
Loads at : > 31300 RS232 1 and 2 and PIO 1
Sectors : 2
Options : RD >1400 Unassigned
Start : >H000 |
>1500
Finish . 35000 5 RS232 3 and 4 ane PIO 2
>1600 Unassigned
CRU Base : >1300 >0000 >0000 >0000 &
>1700 nrel -
You may specify up to four CRUs at a time, Multiple CRUs [Unreleased HEX-BUS adaptor _ e
can be specified for devices like the CorComp and Myarc Disk %180
Controllers, which contain "bank switched™ DSR Roms. This ¢ 11 Thermal printer
allows you to activate Bank 2 for these devieee. When a CRU
>1900 EPROM
address is specified, the code required to execute that DSR ? OM Programmer ———
is enabled in memory between addresses >4000 and >SFFF. If
>1A00
you don't specify the CRU base, the code isn't transferred Unassigned
and you will be disassembling blank memory (>0000 or >FFFF 51800
n
depending on the console type). When you go to input "Page Unreleased Debugger Board
Two® DISKASSEMBLER will turn on the DSR and move it to a :
>1C00 vid
buffer area and then turn it back off. This allows the DSE ideo controller
to be used as an output device while its code is belng >1D00 IEEE U88 Controller card
disassembled.
' >1E00
‘NOTE: The valid CRU Base range is >1000 through >1FFF. If Unassigned
you use CRU Base values lower than >1000 unpredictable >1F00 P-Code card

M/

15

PAGE TWO - DATA ARD TEXT BLOCKS

e i il L

This page allows you to specify up to 15 ranges of addresses
for "block disassembly®™.:These ranges should be specified
for parts of the code that contain lines, or blocks of Data
and/or Text. When specifying these ranges keep in mind that
the "Finish Address"™ will NOT be included in the DATA or
TEXT block.
Data and Text{ Blocks
Start Address Finish Address

>0000 >0000
>0000 >0000
20000 20000

As DISkASSEMBLER looks through code, it can't differentiate
data and text from assembly language object code. It is
simply looking at a list of hex numbers. If no address
blocks are specified, data and text get disassembled as if
they were assembly language mnemonics and any illegal hex
values are converted into DATA. The result is source code
with parts that don't make any sense. This may cause a great
deal ¢f confusion, when inspecting the disassembled code,
for even the experienced programmer. However, even though it
doesn't make any sense to you, it will still reassemble
properly. -

When you specify a range of addresses for block disassembly,
the hex representation of the code, with its ASCII
equivalent, appears as DATA in the output. You then have
the proper representation of the original source code
(excluding any comments) which will make it much easier to
follow and understand. You can use the T option, mentioned
earlier, to indicate whether you want the hex (data) or
ASCII (text) representation to appear first (left most) in
your output. We recommend that you leave out the T option
and allow the DATA to be first.

On the Second Pass DISKASSEMBLER will automatically split up
~these DATA blocks and insert labels in front of them, as
required by the program belng disassembled. This automatic
feature will save you the tedious task of doing it yourself.

You surely won't know where the data and text are located
when disassembling a program for the first time. In this
case, just skip this Page and the next Page using FCTN 6 and
go on to Page Four.

‘—_

16

e S

PAGE THREE ~ DATA FOLLOWING SUBROUTINES

iI'or the same reasons discussed in PAGE TWO - DATA AND TEXT
BLOCKS, you don't want to disassemble data following a
subroutine branch, such as BLWP €AA or BL @AA. To avoid
this, you can specify up to 15, non-REF'd, internal
subroutine addresses followed by up to >FFFF (there will
never be this many, usually 1 to 4) words of data.

Data Followling Subroutines

Sub Address ho. ol Words
»>0000 >0000
20000 20000
20000 »0000

Subroutines are accessed in assembly language using the BL
and BLWP commands and they MAY be followed by one or more
words of data. This is one convenient method of transferring
information (data) to the subroutine. If there is data
following one of these commands, you will want to avoid
disassembling it by specifying the proper information on
this page. GPLLNK and DSRLNK are example BLWP routines that
use a word of data after them but, the data is usually a low
value and it will not be interpreted as code by
DISKASSEMBLER. However, user defined routines may use larger
numbers which could be interpreted as code,

You can recognize whether data is used following subroutines
by analyzing the First Pass printout to find the start
address of the routine. For a BL, this is the operand (e.g.
BL €>A0CE, look at address >AQCE). When using a BLWP, the
operand address in the BLWP points to two words of data that
specify the workspace and the start address of the
subroutine. If the command was BLWP €>A0CE, you would get
the two words of data at >AO0CE. The first word is the

workspace and the second word points to the start of the
subroutine.

Next look through the subroutine's code for some MOV or MOVB
instructions to determine how many words of data, if any,
should follow the subroutine branch. If the subroutine is
branched to with a BL, the return address (pointer to the
next word or instruction following the BL é>xxxx) is stored
in Register 11. If this type of subroutine branch uses data

it will usually move it with a MOV *R11+,xxx instruction or

two MOVB ®R11+,xxx instructions.

e

If the subroutine is branched to with a BLWP, the return
address is stored in Register 14 of the new workspace, If
this type of branch uses data it will usually move it with a
MOV #®R1Y4+,xxx instruction or two MOVB ¥*R1l4+,xxx
instructions. The numbert of MOV #R14+ or pairs of MOVE ®R14+
instructions that you find determine the number of data
wards following a branch to a subroutine., Example:

MOVB #R14+,RO
MOVE ®R14+,@>A00F
MOY #R1l4+,R1

Two words of data were used, one for the two MOVB and one
for the MOV.

After you have the number of words for each subroutine you
can fill in the input fields on this page.

The "Sub Address™ is ALWAYS the value in the operand field
PROVIDED the subroutine IS NOT REF'd at the end of the file.
If it is REF'd you can not specify that subroutine since, as
we discussed before, the operand is just a pointer in the
REF chain. And, since it is REF'd, every operand for that
BLWP will a have different value pointing to the next BLWP
in the REF chain. So for a non-REF'd BL @8>AQCE or a BLWP
@>A0CE you would use >AOCE as the "Sub Address",

The "No. of Words"™ is the number of words of“data that you
found the subroutine moving.

This input section of DISKASSEMBLER is most useful for
Dis/Fix 80 files without REF's and Program Image files that
contain user written subroutines.

NOTE: Failure to indicate any addresses for DATA FOLLOWING
SUBROUTINES or DATA AND TEXT BLOCKS will not cause any
errors with respect to reassembling the code.

18

' .
PAGE FOUR - SPECIFYING OUTPUT DEVICES

When you have made it this far, you are ready to start the
actual disassembly. Before doing so, you have the option to
select devices for output. The output will always appear on
the screen and you can also cutput to a disk or printer,
separately or simuitaneously.

PRINTER OFF OUTPUT OFF SCROLL SLOW

e e et N R N R E F X R g a—

Press Enter to Begin or
Press To

F7 Set Primter Output
FB Set Output Dﬂviee

F= Select Scroll Speed

Press FCTN 7 to specify and turn on output to printer and/or
FCTN 8 to specify and turn on output to disk. FCTN = will
toggle the scroll speed between Fast and Slow. Watch the
status line at the top of the page change as you make your
selections. Once your selections are made press ENTER to
start disassembly, -

OUTPUT TO PRINTER (FCTR 7) - When you press FCTN 7 the
following will appear at the bottom of the screen with

the cursor sitting on the first character of the device
name.

—‘-‘--_'-'*-------—------—_—_--—*——----
--I-----l—Iillrllll-ll——-—-l—------——--__—_—_--

Device Name: (Printer)
PIO.

The default device name is taken from the DISKCONFIC
file. At this time you can press Enter to use the device
shown, type in a new one, or you can press FCTN 4 or
FCTN 9 to abort this option. Once the device is opened
the status line at the top of the screen will show the
device ON. FCTN 7 is recommended for use with a printer,
and not to a disk drive, since it outputs one contiguous
file. It is also recommended that you output the First
Pass to a printer for reference on the Second Pass.

,

19

-

NOTE: JIf‘ the device (filename) you select was one
previously selected the prompt "Last File - Add to it

Y/N:" will appear. If you are using this option to
output to printer just press Enter. If you used this
option to output to: disk press Enter or Y to append to
the end of the last file or press N to change the
device.filename,

OUTPUT TO DISK (FCTN 8) - When you press FCTN 8 the

following will appear at the bottom ¢of the screen with
the cursor sitting on the first character of the device

filename area.

Device Name: (Output)
DSK1.

When specifying output to disk, you must have an
initialized disk in the drive you select. DISkASSEMBLER
will save the output to disk in 65 sector Dis/Var 80
blocks with consecutive ASCII filenames like TESTA,
TESTB, etc. We recommend that you end the filename with
the letter "A"™ s0 you can save up to 26 consecutive
files to disk before running into an ASCII character
like "[", The name of each disk file ¢reated will be in
the beginning of the file, and on the printout, with an
asterisk in front of it for your reference. You can then
load these files using the Editor/Assembler.or TI Writer
for any additional manipulation.

NOTE: If the filename you select already exists on disk,
you will be asked if you wish to add to it {Y) or erase
(N). If you select Y, new information will be appended
to the existing file. If you select N, the old
information in this file, as well as the other
consecutive files (i.e., TESTB TESTC etc.), will be

written over and YOU CAN NO LONGFER APPEND TO ANY FILES,

ALSO NOTE: Currently, the Myarc Ram disk can net append
to EXISTING files., Do not WAdd"™ to its files or you may
wipe out ALL the files on your Ram disk. When prompted
to add (Y) or erase (N), select N and DISKkASSEMELER will
then OPEN ALL_FILES IN QUTPUT MODE which, in effect,

will erase the file before it writes to it. You must

"also select the G option on Page One to tell

DISkASSEMBLER your output is going to a RAM Disk so it
can properly split them up into 65 sector blocks for
easy editing, otherwise, it may lock up and create a
large number of 1 sector files,

e e —

\

) —

Before pressing ENTER to start disassembly, you should be
aware that the FCTN keys, while the program is disassembling
code (making a pass), are different than when you were
entering information on Pages One through Four.

FUNCTION KEYS DURING PASSES

FCTN 1

FCIR 2

FCIN A

FCIR 5

FCIRN 7

FCTN 8

Toggles to DATA first during block disassembly.
Overrides the T option from Page One,

Toggles to TEXT first during block disassembly.
Selecting the T option on Page One also specifies
TEXT first.

Aborts printer output if it is turned ON. It will
also cancel a FCTN 7 or FCTN 8 option selection
when the option?'s "Device Name:"™ input line is
displayed.

Toggles screen back and forth from left to right
since the output is 78 columns.

Allows you to turn your output to printer ON and
OFF. When it is turned "ON™ DURING disassembly the
output will begin with the next line to be scrolled
onto the sc¢creen., Once it is turned ON, selecting
this option again will turn it OFF and close the
file, 1If it is turned back "ON" again the pronpt
"last File-Add to it Y/N" will appear. Press Enter
or Y to continue printing. If you have selected a
disk file with FCTN 7, press Enter or Y to append
to the file, or press N to change the filename.

Allows you to turn your output device ON and OFF,
When it is turned "ON" DURING disassembly, the
output will begin with the next line to be scrolled
onto the screen. Once it is turned ON, selecting
this option again will turn it OFF and close the
file. If it is turned back "ON® again the prompt
"Last File-Add to it Y/N" will appear. Press Enter
or ¥ to append fo the filename displayed. Press N
to change the filename., NOTE: FCTN 8 outputs 65
sector Dis/Var 80 files and automatically closes
the file at 65 sectors, increments the filename and
opens a new file., DO NOT use this option to output
to printer because it will change the printer name
after 192 records (65 sectors) have been printed
and you will halt DISKASSEMBLER with a "Bad Device
Name® or "Bad File Attribute® error.

Yo/

=l -——— —r ———

L] LK

FCTN 9 Escape or Abort disassembly - once you press Enter

at the prompt, this will take you back to the Top
of Page One. It will also cancel a FCTN 7 or FCTIN 8
option selection when the option's "Device Name:"
input line is displayed.

FCTH 0 Retro Screen Capture. Similar to FCTN 7, but
captures all lines that were shown on the screen.
This FCTN remains on until FCTN O is pressed again.
When the screen contents are captured, the message
"Scereen Printed®" will appear. If you want to
continue printing, press ENTER. If you want to
stop, select FCTN 0 again and the output file will
be closed, then press ENTER to continue, When you
select this option again, you will be allowed to
append to the previous one or select a new one.

FCTR = Allows you to toggle the screen scroll speed
between Fast and Slow.

CTRL 1 Rotates through screen colors.

A FEW ROTES ABOUT OUTPUT DEVICES:

1. If you turn on more than one output option (i.e. FCTIN 7,
FCTN 8 and/or FCTN 0) to the SAME disk drive you will be
creating BADLY fractured files. The DSR automatically
uses the lowest free sector so, if you have two output
or append files opened on the same diskegte they will
generate records on every other sector. This will cause
the Data Chain Pointer Blocks in the File Descriptor
Record (File Header) to fill up and you receive an "Qut

of Space" error.

2. Since DISKASSEMBLER automatically creates 65 sector
files for the "Output Device®™ and increments the name
you will find that a 33 sector Program file will create
15 files as an average (i.e. TESTA through TESTO). The
last two files generated are usually less than 65
sectors so you will need approximately 875 free sectors
to disassemble these files. DISKkASSEMBLER will
automatically close the file when the disk runs out of
space and allow you to change diskettes. This way you
can easily disassemble these files on a single sided
single density disk system - but it will require the
better part of 3 blank diskettes.

e e EEEE——

‘) I

FIRST PASS

After you press ENTER on Page Four disassembly will start.
If you have specified output to a printer on Page Four and
it is not turned on, your computer will appear to lock up.
TURN THE PRINTER ON or hit FCTN 4 to escape~ Once
disassembly starts you will see the "File Information®™
scroll onto the screen when disassembling files., If you are
disassembling memory this information will not be displayed.
The first line of code will always be an AORG or RORG
statement with the address specified in "Loads At" or
nStart® on Page Obpe.

We recommend that when disassembling a file or an area of
memory for the first time, that you output the First Pass to
a printer. This will provide you with some useful
information that may lead you to starting over to make a
cleaner First Pass by specifying some DATA or TEXT Blocks
and/or DATA following subroutines. Reassembly of the First
Fass 1s possible, although not advised, so yocu would rarely
output the First Pass to disk.

More specifically, a detailed look at the printout of the
First Pass will show you where the data and text statements,
and subroutine calls using BL and BLWP are located. This
printout will list the addresses in the left most column.
You could then redo the First Pass, specify addresses for
data and text blocks on Page Two and, if needed, specify the
start address (operand) for the BL or BLWP and the number of
words of data following these subroutines using Page Three.
This will result in a more readable First Pass. Or, you
could make these specifications on Pages Two and Three
before the Second Pass.

After selecting your output device(s) on Page Four, press
ENTER and DISKASSEMBLER will begin disassembling the code
you have specified. During disassembly, you can use any of
the FCTN keys previcusly defined.

Selecting one of the function keys (options) during a pass
will pause disassembly, except CTRL 1 - Colors, and FCTN = -
Sceroll Speed. Just press the space bar or press ENTER to
continue, Pressing the Space Bar or ENTER will also pause
the screen scrolling which can be restarted by pressing it
again. With the scroll speed on SLOW you can press the Space
Bar down and hold it and then tap the ENTER key to scroll

. the screen up one line at a time to position it for a Retro

Screen Capture (FCTN 0).

e

23

TR g Jr——| -y

gl Pl A gt it agliyY. il

LT e R L Mi-hﬂ.'ﬂ"n_‘-.l_.u—-ﬂ-&w roFE T . TR MO L S L I

f r'l'"l':'h'-.'--pl' FLS

vl B e, e e

The First Pass output contains six columns of information:

Address Source Code Object Code JText RL Addr
LNOO70 LIMI »>0002 >0300, >0002 ' ...t 0070
LNOOTE LIMI >0000 ' 30300, >0000 ', ...t 0074
LNOOT8 MOVB ®Ri3,R9 >D25Db v,] 0078

¥ - L

The first and last columns are addresses; last column so0 you
can tell what line you are on when toggling the screen (FCTN
5). The addresses in the first column are preceded by "LN."
In this form, they are acceptable labels, and if your
program is short, the First Pass can even be reassembled but
it is not recommended since the symbol table will become
full very rapidly. Columns two, three, and four contain the
assembly language mnemonics and their operands (Source
Code), the Hex values they represent (Object Code), and the
ASCII representation of these values (Text) with a period
replacing values that are out of the ASCII range. Column
five contains a message (like RL1 or RL2) that tells you how
many relocatable words of information are on that line when
you disassemble an RORG Dis/Fix 80 file.

When you disassemble code that you have specified Data and
Text blocks on Page Two the output will start with the LN
followed by the word DATA (or TEXT if you used the T option)
and then 6 words of hex data followed by 12 bytes of Text
with the address at the end.

If you toggle the screen back and forth during a pass, you
may notice that two characters in columns 39 and 30 of the
printed output do not appear on the screen. This is because
DISKASSEMBLER prints 78 column output to an owtput device
while only 38 columns per side are displayed on the screen.

If you are working on a Dis/Fix 80 file, some important
information about the code may appear at the end of the
First Pass. DISkKkASSEMBLER will tell you if the code
contains mixed RORGs and ACRGs, or out of order origins. In
these cases, you should make a new First Pass and select the
X option for Extended Label Checking. If DISkASSEMBLER
prings up a list of REFs at the end you should invoke the V
option before you start the Second Pass. To make a new First
Pass, hit ENTER at the end of the o0ld Firat Pass and you
will return to the "File Information® section of Page One.
Then press FCTN 4 or FCTIN 9 to escape from this area back to
the Top of Page One. The filename you are working with will
be displayed. Accept this by pressing ENTER and continue on
for a new First Pass, don't forget to put in the X option if
it was needed.

ST T T T T T T TIETERETEERL S - e - e, pr——— B i ¢ — kel e eper——mr ¢ an

¥
SECOND PASS '

" ey e

When DISkASSEMBLER finishes the First Pass, press ENTER and
you will be returned to Page One. Select any new options
you wish from the File Information block and continue
through the pages. If you are planning on reassembling the
code later, you should specify output to disk on Page Four
before you press ENTER.

DISKkASSEMBLER outputs six columns on this pass also. But,
column one is now the 1label field.

Label Source Code Object Code Jext RL Addr
AM LIMI >0002 >0300, >0002 et 0070

- LIMI >0000 >0300, >0000 ' ...t 0073
AB MOVB ®*R13,R9 >D25D LI L 0078
AA JLT AG >1105 LI 007A

Labels are assigned using combinations of two letters in the
alphabet or a letter and a number (e.g. "AB"™ or "j6).
Addresses that are referenced in statements like JMP, and
operands in MOV, CLR, etc., statements, can also be assigned
labels. DISkKASSEMBLER can create up to 936 labels.

DISKASSEMBLER will first generate labels AA through ZZ. Next
it generates AQ through Z9. If DISKASSEMBLER finds that it
will be generating labels RO through R9 it will
automatically turn off the R option for the Second Pass even
thought it still appears in the "Options" list, If it was
left on, the assembler would generate an error for the RO
through R9 labels it finds since these symbols are reserved
for register designations. Without the R option the
registers are designated simply as 0, 1, 2, 10, 11 ete,
so the labels RO through RG are valid.

Besides adding labels, and the splitting up of DATA blocks
for label insertion, the other significant difference in the
results of the Second Pass are found at the end of the
output., This information appears in groups. In some of
these groups, the first character on a line is an asterisk
(#). This is because these lines may or may not be required
for reassembly, but can be included as comments in the
reassembled code. Each group is discussed on the following
pages in the corder it appears. DISKkASSEMBLER will place
these groups into a separate file when your Second Pass is
output to a disk, Ram disk or Hard disk. We call this last

. file the Equate File.

e R

25

—
B T, o T T L el s T e ol Pl ol ool gl Wl e N Nt i el i Tl i I ¥ el Stk e D - Hmmwnﬂ_l‘h

P T R TRELT] R I S

— ————————————————————————

REF/DEF/END - If the file is not Dis/Fix 80 or if it does
noet contain any REFs or DEFs, this block will not appear.

& SLAST END >C014 (Absolute)
. DEF ‘BOOT >C01A {(Absolute)
A REF YWNIR >COE0 (Absolute)
- ¥ REF VDPWA >C16C (Absolute)

SLAST END >xxxx will appear when the original code was an
Auto Start file. The address designated by the Dxxxx after
END is the start address for the program. In the above
example, you will also notice that the programmer DEF'd the
label BOOT and that it also references the same start
address. Following the SLAST END statement come the REFs and
DEFs in alphabetical order. REFs are references to routines
or addresses (pointers) that are loaded into memory either
by the module or by another file, After the file is loaded
by the Tagged Object code loader, the loader will go back
through the code in memory and resolve the REFs. It does
this by replacing the REF chain pointers (operand field)
with the actual address for the routine or pointer that was
REF'd. DEFs are a method of placing labels into the REF/DEF
table for use as REFs for other files, start name(s) or CALL
LINK names,.

If there are references to routines or pointers, the word
REF, name of the routine or pointer, and address of the last
reference to that routine or pointer will #dppear in this
block as well as the word absolute or relocatable., If the
code contains REFs, and you plan on reassembling the code,
you should output the Second Pass to your printer and to
your output device. The printed output will help you, when
editing the code, to resolve the REF chain pointers prior to
reassembly of the code,. ;

NOTE: All DEFs MUST BE an actual label, in the label field,
somewhere in the source code in order for them to reference

valid address. Also, REFs or DEFs with a >0000 address, were
REF'd or DEF'd by the programmer but not actually used in
the program. See Reassembly for additional information.

Following the REF/DEF group you may find some information

pertaining to the AORGs and RORGs in the file. DISkASSEMBLER

will tell you if the "File contains™ -~ "Qut of order
origins®" or "Absolute and relocatable data"™. In which case
you should have used the X option on the First and Second
Pass. If you are not disassembling a Dis/Fix 80 file, or if
the file is all RORG these messages will not appear.

- EE—

26

EQU LIST - Unlike any other disassembler, DISkASSEMBLER will
automatically generate an EQU LIST for you. This is a list
of all the labels created that weren't used as actual labels
in the label field. These are operands (values) or
addresses that have been assigned names. They are ceritical
to the proper execution of the code, once it's reassembled,
and are not preceded by asterisks. Without this EQU LIST,
you would receive a number of "Undefined Symbol" errors when
you reassemble the code.

 SYMBOL TABLE LIST - In this group DISkASSEMBLER will

generate a list of all the symbols that were used in the
iabel field and the address (line numbers) where they
reside, As you may have noticed, this group is preceded by
an asterisk since, it was placed in the last file just for
your reference. It is not needed for proper reassembly of
the code. This table is followed by a line that tells you
how many symbols (labels), in hex, that were generated by
DISKASSEMBLER. As it was stated before, DISKASSEMBLER can
generate up to 936 labels or symbols, which is >03A8 in hex.
If this line states that there are >03A8 symbols or you see
that label Z9 was used, there is a good chance that
DISKASSEMBLER ran out of labels, This will only happen with
LARGE files. By carefully specifying DATA or TEXT blocks on
Page Two and/or leaving out the X option, you can reduce the

number of labels used and, perhaps, DISKASSEMBLER won't run
out,

® DSKx.xxxxxx - This is the last line that DISkASSEMBLER
generates IF the Second Pass was output to a device (FCTN
8), other than a printer. It is placed on screen and in the
last file to indicate the name of the Equate File for

editing and adding COPY directives to. See Reassewbly for
additional information.

NOTE: The file name is also placed at the beginning of each

file created and it is placed in the prinout to indicate
where the code is split for easy editing.

THESE BLOCKS ARE THE KEY TO
ACCURATELY REASSEMBLING THE CODE.

Y“o——mmMmM8M8Mm ™

27

L et . e S .l Bt s, s, g Syemieim e il S s L P

e e e et e St 22 B = V™

L v -
e m b e e o P el B e L sl e Ik B T it el gt laialle» e il Bl o Nl b e

Tl AL

.

AT L e o e dpl Bl v e e - -

JE ERNNET N L S

REASSEMBLY

——y-

nllir . —— = A —

This part of the manual addresses reassembling code using
the TI Editor/Assembler {E/A). You should have selected
FCTN 8 on the Second Pass and assigned a filename like TESTA
to the output file. We will begin by discussing reassembly
of code that is not Program Image and does not contain any
REFs. The following discussion is generic in that the same
set of steps, with some additions, apply to reassembling the
other types of code as well.

DIS/FIX 80 FILE WITHOUT RBEF= - If the file was Dis/Fix 80
and the code does not contain any REFs, follow these steps

for reassembly.

1. Select 1 to EDIT from the #* EDITOR/ASSEMBLER ¥* screen
- and then select 1 to LOAD from the # EDITOR ®* screen.

2. Specify the FILE NAME of the last file created by
DISKASSEMBLER, we will call this the EQUATE file for
future reference. The name of the Equate file appeared
at the end of the output for the Second Pass (something
like TESTD). Catalog the disk if you have forgotten it,

3. Select 2 EDIT from the #* EDITOR ¥* screen, The Equate
file contains the REF/DEF/END, EQU, and Symbol blocks.
I1f the code contains DEFs, delete the leading asterisk
from them so that they are not REM'd out.

Y, The last line in this file will reference the file you
are editing., Let's say, for illustrative purposes, that
you find "® DSK1.TESTD." This means that DISkASSEMBLER
has created files named TESTA, TESTB, TESTC, and TESTD.
Provided, of course, that you specified TESTA as the
output file (FCTN 8). Use the COPY directive, explained
on page 229 of the E/A manual, and add enough "COPY"
directives to include all the files that were generated,
except the Equate file. Example:

& >003F SYMBOLS

®# DSK1.TESTD
COPY "DSK1.TESTA"
COPY ®DSK1.TESTB*
COPY *DSK1.TESTC™

You may want to designate the floppy name instead of a
drive number so that reassembly will not be drive number
dependent. i.e. COPY "DSK.SOURCE.TESTA"™ when the floppy
containing the output files is named SOURCE.

e e EE—

28

5. Use FCTN 9 to escape to the #* EDITOR ®* page and select 3
SAVE. Select "Y" for VAR 80 FORMAT and save the file
with its original name (DSK1.TESTD for this example}. If
there isn't an SLAST END >xxxx statement or any DEFs in
this file you are ready for reassembly! Go on to step 8.

6. If the DEF group contained an SLAST END >xxxx statement,
the program was an auto start file, If you want it to be
auto start after reassembly you will need to edit the
last source code file, the one previous to the Equate
file, which contains the END directive, DSK1.TESTC for
this example. So load that into the editor and edit the
last line. |

If the Equate file contains an SLAST END >xxxx and a DEF
name >Xxxx, where the >xxxx address are the same, then
use this label name after the END directive. Example:

. SLAST END >COt1A (Absolute)
& DEF BOOT >C01A (Absolute)

For the above example you would change the END directive
in this file to now read:

SLAST END BOOT
If the file did not contain a DEF that had the same
address as SLAST END >xxxx then place a new label there,
like the name START.

SLAST END START

7. I1f there are any other DEFs in the Equate file note
their addresses on your printout. If any of them are
contained in the file now loaded into the editor then
edit those lines., Pressing FCTN 5 twice in the E/A
editor will display the addresses on the right hand edge
of the screen. When you find the line press FCTN 5 again
to get to the left hand edge, label field. Next type in
the DEF name that corresponds with this address. If the
line already contains a label press FCTN 8 to insert a
new line above it and at the beginning of the new line
type in the DEF name, followed by EQU $. Example:

BOOT EQU $
AR LWPI AC

This allows you to assign two labels to the same
address. Do this for each DEF name listed in the Equate
file. Don't forget to save the edited version of each
file before you load the next one. After all the DEF

names have been put into the file(s) you are ready for
reassembly! That was easy.

]

8. After your file is saved use FCTN 9 to escape to the
®# EDITOR ®* screen and select 2 ASSEMBLE. Specify
your EQUATE file name as the SOURCE file, DSK1.TESTD for
this example. Specify a name for the object file. Don't

forget to use the R option if it was used in
DISkASSEMBLER on disassembly.

The E/A will then reassemble your EQUATE file and
include all the other files specified in your COPY
directives. DSK1.TESTD will include TESTA, TESTB and
TESTC for this example. The assembler will generate one
object code file that contains all the pileces specified
with the COPY directives. You can then use the LOAD AND
RUN option frem E/A to run the code. If the file was
auto start it will start right up. If it starts on a
start name it will use one of the DEF names. Or, it may
be a file that is CALL LINKed to from Basic.

NOTE: There are other methods that programmers use to
auto start their programs without the use of END START
type directives. One is to AORG >83C4, the ISR Hook,
with the Start Address of the pregram. This starts the
program running when the next interrupt occurs.

DIS/FIX 80 FILE WITH REFs - If you did not specify printed
output on the Second Pass, then print out the files that
DISkASSEMBLER generated. You'll need the printed output to
help you make the proper changes. Mark the printed output
as follows, then you can easily use the E/A EDITOR to make
the proper changes to the files DISkASSEMBLER has created.

Each REF will be shown in the REF/DEF/END group with the

address (line number) of the last line it was used in,
Example: REF VMBW >C030 (Absolute)

This is the start of REF Chain Pcinters. Follow the steps
below to resolve all of the REFs on your printout.

1. Go to the referenced address minus 2 (the REF points to
the operand) and you will find an instruction such as
BLWP €>xxxx, or BLWP @AA for subroutine REFs (i.e. VMBW,

GPLLNK, DSRLNK etc.). For pointer REFs (i.e. GPLWS,

SOUND, UTLTAB etc.) you may find any valid instruction
such as, LWPI >xxxx or LWPI AA, or LI R1,>xxxx or LI
R1,AA. Examples:

BLWP @AF >0420, Y0000
BLWP @AN >0420, >CO4E
LWPI AB >02E0, >83E0

30

mas e TrE———— ¢ e = -

2. Replace the 1label generated by DISKASSEMBLER or the
>xxxx with the REF name. Example:
Change BLWP @AF
To BLWP 8VMBW

3. Next look at the Object Code column of the printout on
this line., If you see >0000 as the operand, 1i.e.

»3420, >0000,. then you have reached the end of the REF
Chain for this name. If there is an address there, i.e.

>0420,>CO04E, then go to that address-2 or line (>COHC
for this example) and replace the label or >xxxx with
the same REF name. As you noticed, we are moving
(chaining) backwards through the program. This is a
similar operation to what the loader does when the file
is completely loaded intoc memory, to resolve the REFs.

4, Now that you have pencil whipped your printout, use the
EDITOR to make the proper changes to each of the files.
Then go back and perform the steps outlined for DIS/FIX
80 FILE WITHOUT REFs to handle any DEFs or Auto Start
statenments.

NOTE: IF the file containing REFs that you are
disassembling loads into High Memory Expansion between
>A000 and >C800, you can let the loader. resolve the REFs
for you, But, the file MUST LOAD between >A000 and >C800
or part of it will get wiped out by DISKASSEMBLER when
it is loaded and run,

To do this, first load a NON-AUTO START Dis/Fix 80 file
into memory with 3 LOAD AND RUN, Next load DISkASSEMBLER
and disassemble memory 2>AQ000 to the end of your program,
You see, once the file is loaded by the E/A loader all
of the REFs have been resolved. This has the added bonus
of allowing you to specify "™Data Following Subroutines™
on Page Three, and not having to worry about the V
option. Disassembling memory will then have the same
results as disassembling a file without REFs or DEFs.
(If the file contained DEFs you can patch them in later,
before reassembly).

ALSO ROTE: The Extended Basic Tagged Object Code Loader
(CALL LOAD) can not resolve REFs, All items that are
REF'd must be, instead, placed into the EQU List and the
asterisks left in front of the REFs in the Equate file.
i.e. VMBW EQU >2024 - see Appendix D in this manual or
pages 412 through 418 in the E/A manual for the proper
Extended basic equates and additional information.

31

N

PROGRAM IMAGE - STANDARD LOADER FILES - Program Image files
do not contain REFs or DEFs and they do not use any of the
utilities that are loaded inte Low Memory by the E/A Module
for Dis/Fix 80 files. The 5 RUN PROGRAM loader auto starts
these files so we do not ‘have to worry about END START
directives. They all start with the first instruction of the
first file loaded, i.e. ASSMi, EDIT%, EDITA1, FORMA1, GAME
ete.

1. Follow the first four steps in DIS/FIX 80 FILES WITHOUT
REFs for adding the COPY directives to the Equate file.

2. To change the file back into a Program Image format you
will need to add DEF SFIRST,SLOAD,SLAST to the beginning
of the Equate file for the first Program loaded by the
RUN PROGRAM loader. Next add the floowing two lines
after the first AQORG in the first file that
DISkASSEMBLER generated.

SFIRST EQU $
SLOAD EQU $

SLAST is automatically placed in front of the END
directive for you, so you do not need to EQU it or place
it there yourself. |

NOTE: If the Program Image file you disassembled 1s part
of a multi-file program, i.e. ASSM1 & ASSM2 or EDITA1 &
EDITA2, you will need to place the DEF SLAST in the
Equate file for the last file loaded by the :RUN PROGRAM
loader not in the first file. For example; place DEF
SLAST in the Equate file for ASSM2 or EDITAZ and leave
it out of the Equate file for ASSM1 or EDITA1. The DEFs
for SFIRST and SLOAD along with their EQU $ must still
be in the first file, such as ASSM1 or EDITA1.

3. Reassemble the file(s). Next Load the file(s) with 3
LOAD AND RUN and then load the Save Utility found on the
on the second E/A disk. See page 420 of the E/A manual
for instructions on its use.

NOTE: If the program that was disagsembled resides 1in
Low Memory Expansion (AQRG >2000 - 3FFF) you MUST use
the Mini Memory Module to load it and then load a
modified Save Utility (see Appendix A of this manual).
This is because the E/A Tagged Object Code Loader and
the standard Save Utility both reside in Low Memory and
as such either the loader will be wiped out by your
program or your program will be wiped out by the Save

Utility.

Vo

PROGRAM IMAGE - CUSTOM LOADER FILES - These Program Image
file are loaded by a custom loader that was written by the
programmer. You MUST disassemble and understand how this
loader works and where it places the Program Image file in
memory that it loads. Without knowing where in memory it

places the file it loads, you can not disassemble or
reassemble and run a Custom Loader file with much success.

This is especially important for files like FORTHSAVE that
are placed all over memory when they are loaded. Since these
files do not contain any Tags, DISKASSEMBLER has no way of
knowing where they reside. It assumes that they reside in
one contiguous area of memory, with a default address of
>A000, and disassembles them as such. You will need to find
out if this is true or not and add the proper AOCRG
directives to the source code to get them to load right.
Also, if they do reside all over memory you will need to
write a special Save utility that groups them back into one
block before they are Saved.

Even if they reside in one contiguous area of memory you
will still need to write your own Save utility to order to
Save it as one file without the standard first 6 bytes of
loader information in the beginning of the file.

MEMORY DISASSEMBLY -~ Usually when you disassembly memory,
especially ROM or DSR ROMs, it is done strictly for
reference and as such it is rarely reassembled. If it was
reassembled you could not load it because ROM can not be
written to. The exception to this is when you let the loader
resolve the REFs for you in a Dis/Fix 80 file (See DIS/FIX
8¢ FILE WITH REFs), or if you have a device that contains
RAM where ROM normally resides. In these cases, it is like
reassembling an AORG'd Dis/Fix 80 file without REFs or DEFs.

GOOD LUCK, LEARN A LOT.

| 33

. =y
Sl bt B T R e A e T S T e Sl B T

[STyl R T TR P T S W N e e e I S ——— [M‘“ N ¥ oL il Bl , oS, M vullinion il i . . Tl e S L o 1l

B R T L AP LAY I R TN T N

e e L il I i ki

P P TR

NOTES

. .

APPENDIX A - TUTORIAL ON THE SAVE UTILITY

The purpose of this tutorial is twofold: 1} to guide the
user through the actual process of using DISKASSEMBLER to
break down and reassemble an existing file in a different
way and 2) use the output to understand what the program is
really doing. The file we are going to disassemble and
convert into a relecatable file is called SAVE. It is on the
second diskette that comes with the Editor/Assembler
package.

Formatting the Output

Remember that it is always a good idea to scan the file once
as text to see if there are obvious large blocks of text.
This would be done as follows: after entering the name of
the program (DSKx.SAVE) on Page One of the DISkASSEMBLER,
you will see in the "File Information" that there are >0000
bytes of relocatable code, i.e. the file has an absolute
origin, and that the origin is at >2800. Press Enter to
place the cursor in the "QOptions™ area and enter a T in your
list of options so that text will come up on the left
screen. Now on Page Two enter as a "block" of disassembled
code >2800 for the start address and >FFFE as the end
address. This should certainly take care of the whole
range. Then use FCTN & to advance through the rest of the
pages and press <ENTER> on Page Four to start the process.
Tou will see at first large blocks of obvious text, since
you can read them. As these blocks scroll by, look for
periods since unprintable text is represented by a period.
When you see one then check the data side of the screen to
see if there is really a hex >2E there, in which case the
period is reai. (If it isn't then the program will not
reassemble correctly as text.) In this particular case you
will find that all the addresses from >2800 to >2BB2 contain
only text with the exception of the words at >282C and

22B30. 50 we don't want these in our text block. It turns

out that there are other short areas of data only, but we
will ignore these for now.

You should also note that there are multiple external REFs
listed at the end, so you should invoke the V option as well
to avoid getting two word blocks of data where there should
be opcode {see QOptions on page 11).

e

34

....

Having scanned through the entire program you should now see
the message to press enter for the Second Pass. After ’yuu
press enter the cursor will be in the "File Information®
area, so press FCIN 9 to:place it in the File Name area to
redo the First Pass. Accept the default program name by
pressing enter, and remember to add the V option. However,
now on Page Two enter three separate blocks. The first
should start at >2800 and end at >282C, the second start at
y282F and end at >2B30, and the third start at >2B32 and end
at >2BB2. Then press FCTN 6 to advance to Page Four and
press enter, we don't need an output at this time,.

When you get to the end of the First Pass press enter, you
are now starting the Second Pass. Accept all defaults on
Pages One through Three by pressing FCTN 6 for each page. On
Page Four use FCTN 7 to cutput to your printer, and FCTI:]- 8
to output to a disk file (for instructional purposes we will
use the name SAVEA for the output file). At the end of the
Second Pass DISKASSEMBLER is finished so press enter and
then and you can exit the program Dy pressing CTRL = since
the cursor is at the Top of Page One.

Modifying the Output

It is useful to have a printed output to make the following
changes, before typing them in on the disk files, buft not

necessary.

First 1l1ook at the file SAVEC (you should have seen the
message at the end of tLhe Second Pass that this wr-:as the
final output file). As described 1n tlie section on
Reassembly - Dis/Fix 80 With REFs, you will now have to
trace the REF chain backwards, entering the proper name 2at
each location, so that the flle can be reassemble properly.
First look at the last one listed - VS3BW. The REF tells you
that this is located at >2C80. Scan the reference addresses
at the right and find 2C3E (line 150 of SAVEA).

BLWP €>0000 »>0420, >0000 Ve ee! 2C3E
Replace the >0000 with V3SBW s0 that it now reads:
BLWP E6VYSBHW >0420, >0000 ' e o 2C3E

You did not actually find 2CHQ0 because it 1is the second word
of the instruction., The >0000 tells you that there are no

more references to VSBW.

e

Now do the same with the next REF - VSBR. This is at >2E10,
so look for J>2EQE which is at line 101 of SAVEB.

BLWP &>0000 >0420, >0000 . ..! 2E0E
Again, replace the >0000 with VSBR so that it now reads:
BLWP @VSBR >0420, >0000 LI 2EOE

Once again there are no more (>0000). Next is VMBW at >2DAA4,
This is on line 72 of SAVEB.

BLWP €BZ >0420, >2D54A v, =-Z' ' 2PDA2
Note that here you see BLWP @BZ, Replace the BZ with VMBW,

and see that the data in the comment field tells you that BZ
is »2D5A,

BLWP @VMBW 20420,>2D58 ‘. -Z' 2DA2
So now look for >2D58 (line #49) and do the same thing.
so that it now reads: ‘

In the case of VMBW there are TEN references and you must
work each one backwards, replacing the label or address with

VMBW. The last, indicated by BLWP &€>0000 is on line 121 of
SAVEA. -

Now do the same with the other REFs. For your information,
there are 2 for YMBR, and 1 each for SLOAD, SLAST, SFIRST,
KSCAN, GPLWS, GPLLNK, and DSRLNK. GRMWA and GEMRD are never
actually used since their REF address is >0000. Also, the
label SAVE should be placed in the label field on the line
for address >2BD6 (line 118 of SAVEA), since this is the
DEF, or starting, address. If you are typing in the changes
directly on the disk files already, remember to save them
each time you go to a different file, or you will lese what
you have donel That is why it is easier Lo pencil in the
changes on paper, and then type them all at once.

Once you have the REFs and DEFs-resolved and typed in you
are ready to make the final changes in the disk file. Load
SAVEA and decide whether you want an AORG (Absolute Origin)
or RORG (Relocatable Origin) file. If it is to be an AORG

"file then you must change the addresses listed with each

AORG on the file (lines 10, 85, and 87 of SAVEA) remembering
to keep the relationship between them the same. For example,

if you wanted to AORG the file at >DC00 you would change the
three AQRGs to:

AORG >D00O
AORG >D332 (>2B32 - >2800 + >D000)
AORG >D352 (>2B52 ~ >2800 + >D000)

e

36

o L A i sk

\

In this tutorial we will make it a relocatable file, DYy
deleting the first ACRG altogether. The other two may also
be deleted, and then on the same line as the label AW, type
BSS >20 {this is the diffgrence between the two AORGs just
deleted (>2B52 - >2B32 = >0020) and represents the area
reserved for the name of the program to be created, as you
will see below). While we are at it, you will see when we
analyze the program that the following sequences are data
only, so to make things look neat, type DATA over the opcode
and delete the operand field so that the words of DATA which
are presently a comment, slide over and become the operand:
SAVEA line 16 (>282C), 100-101 (>2BBU->2BB6), 103 (>2BBA),
109-112 (>2BC4->2BCA), and 116 (>2BD2). There aren't any in
SAVEB and SAVEC. So these lines in SAVEA should now look

like: 0016 DATA >2E00 . 282C
0100 DATA >0600 .t 2BBY
0101 DATA >1000 .t 2BB6
0103 DATA >2000 . 2BBA
0109 DATA DBTOF T
0110 DATA >800F ', ." 2BC6
0111 DATA >DO0O . 2BCB
0112 DATA >BT7OF . 2BCA
0116 DATA >7CTC vifr 2BD2

Next load SAVEC, after saving SAVEA and at the the bottom of
this file delete the asterisks at the beginning of each line
of the REFs and DEFs. Next append to the end of this file
the COPY directives for the other two files: “

COPY "DSKx.SAVEA®

COPY 'DSKx}SHVEB'
where x is the disk drive you are using. Save. the file as
DSKx .SAVEC and you are now ready for the final assembly
process. Enter the ASSEMBLER in the E/A module, For the
input file type DSKx.SAVEC and for the output file, use any
name you wish (but not SAVE if the original file is on this
disk). For options use R, since your source code uses R for
registers. If you had not used the R option in the
DISkASSEMBLER then it would not be necessary here.

Before you can actually run this program, read the
instructions in the E/A manual. You need to have another
program in memory which has as DEFs the labels SFIRST,
SLOAD, and SLAST, referring to the first and last (END)
addresses of the file, and normally the first instruction of
the file should be B 8LABEL, where LABEL is the actual start
of your program. Since this file is relocatable it can't be
used with AORG files unless its loaded into the Mini Memory
Module. It should also be lcaded last, 30 that the code
saved begins where the module normally puts it.

A —

¥
3

T INNIE——————— s

¥hat does SAVE do?

First we look at the DEF for the program which is SAVE.
This is >2BD6 located on line 118 of SAVEA {(you should have
put it there already). The first 4 lines set RO to >0000,
which is the beginning of the screen image table, R1 to AB
(1ine 17 of SAVEA) and R2 to >300, then does a BLWP at VMBW.
Remember that in.a VMBW or VMBR, RO must always be the
location in VDP that data is to be moved to or from, R1 is
the location in CPU that it will be moved from or to, and R2
is the number of bytes to move. A complete screen in
GRAPHICS mode is 24 rows by 32 columns, or 768 bytes (>300
in hex), so in other words a complete screen is written to
VDP ram. This is a wasteful way of doing it, by the way,
since the spaces don't need to be written., Next a VMBW is
done for the 8 bytes at AC to VDP >400. This is the
definition of sprite character >80, and if you look at the
code (0000000000007CT7C) it represents an underline. See the
Basic Manual for explanation of graphics definitions. This
program will be using a sprite as its cursor.

Next the sequence moves the word at AE (>B70F) to AF. You
might wonder why, since AF already contains this word, but
as you will see, it changes during the course of the
program, and this instruction reinitializes it. Next R3 is
loaded with >02E2, which will be used for the starting
location for input on the screen (row 23, col 2). Finally a
BL @AG is done, which uses the 8 bytes at AF to set the
sprite attribute list for sprite >¢1 at VDP >300. It
initially sets the pixel row to BT, pixel column to »0F,
uses character >80, and color >F (white). The routine AG
will always be used to move the sprite, because the 2nd byte
at AF will be changed.

Now a BLWP 8KSCAN is done, to look for a key press. MOVB
8>837C looks for the condition bit at the GPL status bye; it
is 0 if no new key was pressed. Hence the JNE AI tells the
program that a new key WAS pressed, and JMP AJ goes back to
look again, if a key WAS NOT pressed. (This sequence is
looped through thousands of times per second).

We are now at line 137 of SAVEA. If a key was pressed, the
byte at >8375 contains the ASCII value of the key, and it is
moved to R1 and checked for the following values: A} >08 is
the backspace - we jump to AM which checks to make sure that
R3, which is keeping track of the screen location, is not
less than »02E2., If it isn't, R3 is DECremented, B 1is
subtracted from the value at AR, which is the Y location of
the sprite (1 byte after AF) and we branch back to AJ, move

A P

PRI T T Y =l - r—— o - =

T

Dol T T e e e g my = Eelh -

A e e m -

) |
_M
the sprite (BL €AG) and then look for a key press. B) >0D
ijs the enter key and will jump to the continuation of the
program. C) >05 is the quit key and jumps to AO. This
branches to AK, which clears the status byte so no error is
detected, loads the GPL‘workspace and branches directly to
0070 (which in turn will returan to the calling program). AK
couwld not be branched to directly because it was more than
>100 bytes away, and jumps can't handle this. D) >0F is the
back key and does the same as quit in this case. E) >20
checks for any other ASCII less than the space key and
doesn't allow it. Finally by moving the current screen
location in R3 to RO and BLWP to VSBW, the key pressed 1s
moved to the current screen location, the latter is
incremented, checked against the end of the line and if not,
we go back to look for another key. Unfortunately a nistake
in the program does not give you an error if you ARE at the
end of the line - it just puts you back at the beginning and

allows you to keep typing!

" Now let us say that the whole file name has been entered and

displayed on the screen, and the enter key pressed. We
therefore arrive at AN (line 171 of SAVEA). First the byte
D0 is moved from AV to AF and the 8 from AF to VDP >300 via
routine AG. The byte >DO0 indicates no more active sprites
and since it i1s at the start of the sprite attribute list,
we are left with NO active sprites. This speeds up the rest
of the program. Next the >20 bytes on the screen beginning
with >02E2 are moved to CPU ram at AW via a BLWP @VSBR. It
should be >1E bytes since we began in col 21

The next sequence at AZ "parses"™ for the first space in the
name at AW. R3 is initialized to AW. AZ begins by making
sure that the end of the block reserved for the name as not
been reached. If not it looks for the value of the byte
contained in the address in R3 and increases R3. It is
compared to the value at AY which is a space. If it is not
a space, we go back to AZ and look again, R3 being 1 higher
than before. If it is, we move on. R3 now contains a value
TWO higher than the last non-space in the name. It is moved
to R8, which is then decremented by two, and hence holds the
last non-space of the name. The value AW (not the byte
contained AT that location) is now subtracted from R3, which
therefore represents the length of the name + 1. This is
moved to R to save it, and then decremented so that R3 ‘now
holds the name length. The length is now compared to 3 and
if less we branch to AX which uses the text -at AS (bad file
name) for an error message, eventually allowing you to start
again. Follow this sequence in your source code - you should
wind up at CA which is just after the start of the program.

b 39 . .

'E .
If the name length is 0K, the bytes in R3 are swapped so
that the length is in the MSB, and this is moved (byte
operations are always on the MSB, hence the swap) to
location BA, which is 1 before AW, That is we now have at
BA the length of the name followed by the actual name.

Now we are finally ready to work with the program that was
loaded to be "saved,” and happen to be exactly at the last
line of SAVEA. R6 is loaded with SLOAD, the start address
of the program to be saved, and is stored at location BB,
and R7 with SLAST the end address. SFIRST is subtracted
from RT which is therefore the total length of the program.
If it is negative {(Jump if Less Than) an error has occurred,
the message at BX is.loaded into the error routine and the
latter is branched to. Next at BW R7 (which will always
contain what is left to save) is moved to R2 and compared to
>1FFA., This is because >2000 (8K) bytes can be saved in
each portion of the program, but the first 3 words are
reserved for system information (the flags >FFFF or >0000
for more to load or no more to load, the total length in the
segment, and the start address to put it at). Thus if R2 is
less than >1FFA all of it will be used, otherwise a maximum
of >1FFA.

Now at BD, R2 is moved to R10 to save it and then 6 is added
to account for the 3 words mentioned above., This total
length of bytes in the file is now moved to location BE,
which is the 4th of a sequence of 5 words starting at AF.
This will comprise all but the name of the file in a PAB,
which must be set up before any disk access. You should
read your E/A manual for a fuller explanation of PABs. >06
represents the OP-CODE for save (a memory image file) >1000
the location in VDP of the data to be saved, the third word
is not used, the 4th (taken from R2) represents the number
of bytes to be saved) and the LSB of the last is the lengtih
of the device name, which will be inserted in a moment. The
first 9 bytes (up to the length) are moved to VDP at >0F80,
a frequent but not necessary location for PABs. Now Ri,
which you may remember from above is the device name length
plus 1, is moved to R2, and the total sequence of length
plus name itself is moved to VDP at >0F89, the 10th byte of
the PAB. This completes the setting up of the PAB.

The screen is now rewritten, wiping out the input device
name, and RZ bytes (DECremented by 1) from AW are written to
the screen on the line below "CURRENT FILE :®™ You can check
this by seeing what it in this file at >202 + >282E = >2A30.

. Next location BK is cleared and then either left as 0 if R10

is equal to RT, or set as J>FFFF if they are unequal.

e

A4 - EmImEAE . = ey os =l

-
1
1

\ \

N ! |

(Remember that at BW, R7 was what was left to do in the
entire program, and at BD, R10 was the number of bytes in
this segment ~ >1FFA or what was left). At BL the length of
this segment (including the extra 6 bytes) is moved to BM
and SFIRST (where it i% to start when the newly created
program is loaded into memory) is moved to BN, These six
bytes at BK,BM, and BN are moved to VDP at >1000 to form the
beginning of the data sequence to be saved. The moving of
data is completed by loading RO with >1006, the location in
VDP after the 3 data words just moved, R1 with SFIRST (R6)
the location of the beginning of the program in CPU, and RZ
with the number of bytes in R10 (>1FFA or less). Then BLWP
8VMBW does the job.

The name at AW is now compared to "CS" at BQ and if equal,
i.e. cassette is to be used, a branch to the routine at BR
is peformed. We won't analyze this part now, but you can
used it if you ever want to set up cassette access routines
in your programs. It involves setting up a lot of words in
scratch pad ram (>8300 to >8400) and then BLWP @GPLLNK, DATA
>3D.

If the cassette routine is not used, then the main program
goes on., The location of the device name length (>0F89 in
this case) is moved to location >8356 in CPU (this must be
done before EVERY disk access) and then a BLWP E@DSRLNK, DATA
>08 completes the process of writing this segment to disk.
The equal bit of the status register is set if there is an
error, so JEQ BT branches to the error routine and will give
an I/0 error message, with the number of the error being
determined from byte 1 of the PAB (this is done by the
console and the DSRLNK routine) and employed in, the sequence
at BU. For some strange reason the routine BU is branched
to anyway, but since the error byte is 0 it Jjumps out
immediately with a JEQ CG, where CG contains B #*Ri1t, or
return.

We now move the "more®"™ flag to R1 and if it is 0, i.e. no
more, go to the return to E/A routine at AK. This is the
same routine used if quit or back was pressed at the
beginning of the program. Next we add R10, which should be
>1FFA if there was more to do, to R6, which is SFIRST, so0
that now R6 holds the start address for the next segment,
used in the 8th line after BL (line 48 of SAVEB). RT0 is
also subtracted from R7, leaving R7 with the total of what
is left, and added to the word at BB, to hold the new SLOAD,
used 1 line after BL. Finally we AB €BV,®#R8. That is, the
byte at BV, which is »>01, is added to the contents of the
location specified in R8, which you may remember from way

e e —

-1 O S Sy U

back, was the last character of the device name. So we have
now set up a new filename differing by one ASCII character

and we finally branch back to BW which will determine how
much is left to do, and do it.

This futorial has of necessity been rather long. However it
shows you the power of DISkASSEMBLER, and how you can use it
to take apart a program and LEARN!

42

APPENDIX B- PROGRAM FILES LARGER THAN 38 SECTORS

As noted in Section 2.2, program files larger than 47
sectors (48 when listed in the catalog) cannot be handled by
DISkASSEMBLER, because of lack of buffer space. BERE ARE
THE INSTRUCTIONS TO SPLIT such FILES up into manageable
segments that can be disassembled. The only requirement is
a sector editor such as Advanced Diagnosties (A/D). We will
use A/D for this example.

First, copy the file to a blank initialized disk. This will
make the following steps easier, because you will know where
the file is located, and we can refer to absolute sector
numbers. Next copy two dummy files to the same disk. Use
names that follow the program name you are working with
alphabetically. If the program name was TEST, use TESTA,
and TESTB. Now enter Advanced Diagnostics, select the drive
your working disk is in, and Edit Sector 1 (ES 1}. Sector
one is the alphabetical list of header sectors (file
descriptor records or FDR) and should read 000200030004 and
the rest 0's. We will leave this sector alone. Nexi ES 2.
If you read it in ASCII you should see the name of your
program - we will work with the hex code in a moment. Now
go back to the command line and Write Sector 3 (WS 3) and WS
4. You have now replaced the header sectors of the two
dummy files .with éxact copies of the one for your program.
We will now modify sectors 3 and 4.

FIRST SPLIT - First let's edit sector 3 (ES 3). In ASCII
mode, change the name of the file to the first name you
selected above {TESTA). Next look at byte 15.. This is the
hex equivalent of the number of sectors used, which is ONE
LESS than that listed in a catalog (the latter counts lhe
FDR as well). For this file, we will use the maximum that
DISKASSEMBLER allows (>2F or decimal 47 sectors). Type this

in. Next move down to bytes 28-30. This is the beginning

of the series of data chain pointer blocks telling the disk
controller where the sectors are located. Because we have
moved the file to a new disk there is only one. We will
use, as an example, a file that has 50 sectors of data
(1isted as 51 in a catalog). The block will thus read
221003 (or 201003 if a Myarc Disk Manager was used with
another sector editor).

These 3 bytes are composed of 6 hex digits, each called a
"nibble." We will call them n1 to nbé. ninin2 in that order
indicate the start sector of the first contiguous bloeck of
data sectors (in this case >022, decimal 34). ns5nétn3
indicate the offset from the beginning of the block to the

T —

43

A — T e b

end, and includes offsets in previous blocks, in this case
none. For this file we have >031, so the last sector in the
block is >022 + >031, or >053. These 3 nibbles are the ones
we must change. We want to indicate that only »2F sectors
are used. The offset must be »02E, since it is ADDED to the
first sector. Type "02E" over n5, nb, and n1. The block
should now read >22E002. That completes the change for this

FDR. Get back to the command line and save this back to
disk using Write Sector 3 (WS 3).

SECOND SPLIT ~ First, ES 4, Change the name of the file to
the second name you selected when creating the dummy files.
Now go to hex. In byte 15 type 03. This number is the
number of sectors left (50-47). You must type whatever is
appropriate for your file of course. Now move down to bytes
28-30. We want the "file™ to start where the previous one
left off, 30 we add >2F sectors to the original start
sector, >22. This will be sector >051 so type in "051" over
ninin2. The block should now read 51x0xx. The offset now
becomes >002 (calculated by subtracting >02F the number of
sectors in the first file, from >051, the original offset).
Type this in and you now have 512000. Write this sector
back to disk (WS Y4) and you are finished.

If vou catalog the disk now, you will see something like:

Filepame Size Iype

TEST 51 PROGRAM
TESTA 48 PROGRAM
TESTB 4§ PROGRAM

TESTA and TESTB can be read and dizsassembled by
DISKASSEMBLER. The same technique can be used for files of

any size, of course, even ones that have to be split into
three parts. |

NOTE: Since no file larger than 33 sectors is meant to be
loaded by Option 5 of the E/A or Option 3 of the TI-WRITER,
these files must have a separate loader. You should
disassemble this loader first to see how the file is placed
into memory, and WHERE IT STARTS. This is necessary so that
you may enter the start address, "Loads At", on Page One of

the DISkKkASSEMBLER input screens, otherwise the code will not
make sense.,

ALSO NOTE: For a more complete explanation of FDR's and the

Data Chain Pointer Blocks, see page 33 of the Advanced
Diagnostics Manual.

N‘S—_—M"_‘"_

122004
122006
r

|

| >2008

152004
{ >200C

1 >200E
1>2010

|>2012

152014

1>2016

152018
152014

1 >201C

|>201E
| >2020
1>2022
I >2024
1>2026

| >2028
1>2024
| >202C
1 >202E
>2030
>2032
I >2034
1>2036
{>2038
1 >205A
1 >2090
1>2086
1>217E
1>21E2
[>234C
>2432
>2U6E
1>2h84
1>2490
1>249E
| >28A4
| >24B8

|UTILITY

Hul--.-—_-—-—-H—.—-—““——--“——H-H——-

)

Appendix C - Memory Maps
Extended Basic LOW MEMORY EXPANSION after CALL INIT

v 152000 | >205A
{>2002 | >24FA

>4000
>AADS

>2038
>2096
>2038
>21TE
>2038
>21E2
>2038
>234C
»>2038
>2432
»>2038
>2U6E
>2038
>2484
»>2038
>2400
>2038
>2UQE
>2038
>24AA
>2038
>24B8
>2038
22090
>0000
start
Start
Start
start
Start
Start
Start
Start
Start
Start
Start
Start
Start

(NOTE:
First Free Address Low Mem~Exp pointed to by >2002

L 3 g & L & L &) Sl I - S e e . . e il e - S— e aliee wny S S - e sy r ¥ X 3 3 3 L _F & 1 L L L} i e -

IML link to name link routine pointer.
First Freé address in low mem-exp.
Last Free address in low npem-eXxp.
Indicates CALL INIT has been executed.
VECTOR TABLE (ie: BLWP @KSCAN)
NUMASG Utility workspace pointer
Start address for BLWP @NUMASG
HUMREF Utility workspace pointer .
Start address for BLWP @NUMREF
STRASG Utility workspace pointer
Start address for BLWP E@STRASG
STRREF Utility workspace pointer
Start address for BLWP @STRREF
XMLLNK Utility workspace pointer
Start address for BLWP €XMLLRNK

KSCAN Utility workspace pointer
Start address for BLWP €KSCAN

VSBN Utility workspace pointer
Start address for BLWP @VSBW

VYMBW Utility workspace pointer
Start address for BLWP E€VMBW

VSBR Utility workspace pointer
Start address for BLWP €VSBR

VMBR Utility workspace pointer
Start address for BLWP @VMER

YWTR Utility workspace pointer
Start address for BLWP @VWTR

ERR Utility workspace pointer
Start address for BLWP @ERR

Start of Utility Workspace

of XML link to name link routine.
of ERR Routine. (Return Error code to basic)
of NUMASG Routine. (Numeric Assignment)
of NUMREF Routine. (Numeric Reference)

of STRASG Routine. (String Assignment)

of STRREF Routine. (String Reference)

of XMLLNK Routine. (Link to sys Utilities)
of KSCAN Routine. (Keyboard Scan)

of VSBW Routine. (VDP single byte write)

of VMBW Routine. (VDP multiple byte write)

of VSBR Routine. (VDP single byte read)

of VMBR Routine. (VDP multiple byte read)

of VWTR Routine. (Write to VDP register)
No GPLLNK or DSRLNK in X-Basic CALL INIT)

¥ The REF/DEF Table resides at the end of ¥
Low Memory Expansion. Each entry is 8 bytes. *®
§ for the Name and 2 for the starting address.®

CALL INIT in X-Basic leaves this space empty. ®
B e e e e e e o o e s i e e i e S B B B B S S S e e B *

{ >3FFO0 DEF Name (CALL LINK or BLWP &) 6 characters.

1>3FF6 | Start address of the above routine, 2 bytes.

I>3FF8 | DEF Name {CALL LINK or BLWP &) 6 characters.

I>3FFE | Start address of the above routine, 2 bytes.

o e e e et e e e e e o e e i e +
Extended Basic HIGH MEMORY EXPANSION usage

o e B e e i e e o e e e +

1>A000 |START OF BIGH MEM-EXPANSION

I

(If Mem-Exp is present then the value at >8389
will be >E7 while the program is running)

L ¢t 1 8 & % 3 §y J ¢ 8§ % 1 % % 1 B § _E } & B L 1 B & R B B B R B R ol

NUMERIC VALUE TABLE (in RADIX 100 notation)
Starting point of the Symbol table in VDP RAM is
pointed to by >833E while the program is running.
The Symbeol table then points into the Numeric
value table for each of the variable names.

E
A
ﬂ-
3
y
-]
(=5
3
4]
v]
=
5
i
5]
~
-
e
Q
e
-
ﬂ.
{D
£
cr
Q
or
ot
»/
0
LAl
o3
N

LINE NUMBER TABLE -~ 4 Bytes per entry. I
| Line ¢=2 Bytes | Start Address of line=2 bytes ||}
Line numbers are stored highest ¢ to lowest ¢ I
Starting address of this table pointed to by >8330!
Ending address of this table pointed to by >8332|
Current line number being referenced I
in this table is pointed to by >832E !
___ |
PROGRAM SPACE (Last line entered is at the top)
Start of program space = (value at >8332)+1 I
Reserved words have been converted to Token values
and line numbers are removed from the beginning of
each line, The format for each line is as follows:|
1st Byte = Number of bytes for the line
Following Bytes = Actual line code with Token

~ values replacing reserved words.

)

Last byte = >00

Highest address to be used in Mem-Exp by XB
Workspace Pointer for LOAD Interrupt
Start Address (PC) for LOAD Interrupt

il ke el eaas Se-aay PR R

Editor Assembler LOW MEMORY EXPANSION after CALL INIT

[>202A
|

I »202¢C
1>202E
12030
|>2032
| >2034
[>2036
| >2038
152034
| >203C
>2094
>2094A
1 >20BA
| >20D9
1 >20FA
| >20FC
t>20FE
| >20FF
I

1>2100
152102
I>2104
|>2106
1>2108
1>2104A
15210C
| >210E
1>2110
I>2112
1>2114
1>2116
1>2118
i>211A
1>211C
1>211E

>2398
I >225A

20000
>A000
>FFDT
>2676
»>3F38

>0000
20000
>0000
>0000
>0000
>0000
>0000
»0000

[=3
---r-----_-l-—--——#ﬂ--_-b---——----——---——_------—#---—-----I‘-—

Indicates CALL INIT has been executed.
Start address of NAME LINK routine

Start address of LOADER executed from GPL
Start address of CIF

Start of Variable Storage area

|OTLTAB (Utility Table Area)
: START address for program just loaded

First Free
Last Free
First Free
Last Free
pointer to default

sSaved
Saved
Saved
Saved
Saved
Saved
Saved
Saved
Start
Start
Start
Start
Start

in High Memory

in High Memory

in Low Memory

in Low Memory and
REFs/DEFs thru 23FFF

address
address
address
address

Checksum

Pointer to FLAG byte in PAB (in VDP)
GPL return address

CRU base of Peripheral

Entry address of DSR

Device Name Length

Pointer to Device Name {(PAB in VDP)
Version Number of DSR

of 80 BYTE RECORD Buffer

of UTILITY Workspace Registers

of DSRLNK Workspace Registers

of USER Workspace Regilsters

of LOADER Workspace Registers

Data 100 ;

Data »>2000

(BH20 and H2000)

Byte Decimal Point '.! %
Byte >AA for Validation -

VECTOR TABLE (ie:

BLWP @KSCAN

GPLLNE Utility workspace pointer

Start

address for BLWP O6GPLLNK

IMLLNE Utility workspace pointer

Start

address for BLWP &éXMLLNK

KSCAN Utility workspace pointer

Start
VSBH
Start
YMBW
Start
YSBi
Start
YMBR
Start

address for BLWP E6KSCAN
Utility workspace pointer
address for BLWP BVSBEW
Utility workspace pointer
address for BLWP &VMBW
Utility workspace pointer
address for BLWP @VSBR
Utility workspace pointer
address for BLWP €VMBR
Utility workspace pointer
address for BLWP @VWTIR

.x

Editor Assembler LOW MEMORY EXPANSION Continued

o e e e B B 1 e o P o . e B . . o e e e e e +
1>2120 | >209A DSRLNK Utility workspace pointer :
1>2122 | >22B2 Start address for BLWP @DSRLNK !
1>2124 | >20DA LOADER Utility workspace pointer !
1>2126 | >23BA Start address for BLWP @LOADER !
1>2128 | Start of Name Link routine. !
[>218A | Routine to Return to Assembly Language from GPLLNK]|
1>2196 | Start of XMLLNK Routine. (Link to sys Utilities) |
1>21C% | Start of GPLLNK Routine. (Link to GPL Routines) I
1>21DE | Start of KSCAN Routine, (Keyboard Scan) }
[>21F4 | Start of VSBW Routine. (VDP single byte write) |
152200 | Start of VMBW Routine. (VDP multiple byte write) |
12>220E | Start of VSBR Routine. (VDP single byte read)]
1>2214 | Start of VMBR Routine. (VDP multiple byte read) |
I>2228 | Start of VWTR Routine. (Write to VDP register) |
1>225A Start of CIF Routine. I
I>22B2 | Start of DSRLNK Routine, (Link to DSR routines)]
|>2398 | Start of LOADER when comming from GPL I
15>23BA | Start of LOADER Routine. {(Loads DIS/FIX 80 files) |
152676 | First Free address Low Memory Pointed to by >2028) |
{>3F38 | Last Free address Low Memory Pointed to by >202A4) |
| | Start of Default E/A REF Table. I
{>3F38 | UTLTAB >2022 Pointer to Utility Table - Low Mem|
1>3F40 | PAD »>8300 . Start address of Scratch Pad Ram |
{>3F48 | GPLWS >83E0 GPL Workspace pointer !
I>3F50 | SOUND >8B400 Location of the Sound Chip I
|>3F58 | VDPRD >8800 VDP Read Byte port l
I>3F60 | VDPSTA >8802 VDP Read Status port I
|>3F68 | VDPWD >8C00 VDP Write Byte port I
[>3FT70 | VDPWA >8C02 VDP Write (set) Address port !
{>3F78 { SPCHRD >9000 Speech Read port l
1>3F80 | SPCHWT >9400 Speech Write port I
i>3r88 ! GRMRD >9800 Grom/Gram Read Byte port l
1>3F90 | GRMRA >9802 Grom/Gram Read Address port |
{>3F98 | GRMWD >9C00 Grom/Gram Write Byte port I
I>3FAD | GRMWA >9CG02 Grom/Gram Write (set)} Address port|
{>3FA8 | SCAN >000E BL address for key scan routine I
I>3FBC | XMLLNK >2104 BLWP address XMLLNK Routine I
1>3FB8] KSCAN >2108 BLWP address keyboard scan I
1>3FCO | VSBW >210C BLWP address VDP Single Byte Write}
{>3FC8 | VMBW >2110 BLWP address VDP Multi Byte Write |
1>3FDC | VSBR >2114 BLWP address VDP Single Byte Read |
{>3FD8 | VMBR >2118 BLWP address VDP Multi Byte Read |
1>3FEC | VWTR 2211C BLWP address VDP Write To VDP Regs|
I>3FE8 | DSRLNK >2120 BLWP address DSRLNK Routine !
{>3FF0C | LOADER >2124 BLWP address DIS/FIX 80 Loader i
}>3FF8 | GPLLNK >2100 BLWP address |

GPLLNK Routine

| q 1

#

§ _r- s -yl - H.":'T

Editor Assembler HIGH MEMORY EXPANSION . Mini Memory ROM >6000->6FFF .
---------------------------- + e S e e e = e
¥ e o e YD ANS 1>6000 | >AAO0 Space for Standard Rom Header -~ All >0000 |
ON ! P p
; :>AOUG ISTART OF HIGHHHEH_EIPAHSI i 156010 | >605A Start address of NAME LINK routine |
¥, i ¢ . .]
A |>A000 | First Free address Kigh Mem in@nteg to by ;gggg | ;;gg:ﬁ ;gfgg Sary aderess o DIo/rIx 0 LOADER from GPL;
B ed to
1 i?FFDT I Last Fres addreas Figh Tem roin d i 156016 | >0000 not used |
!y !
; 3 , | |UTILITY VECTOR TABLE (ie: BLWP €KSCAN)
- :;ﬁggg i igﬁ 1 gg;ﬁipiE:tPuctinn I 1>6018 ! >7092 GPLLNK Utility workspace pointer
L8 : , ! |>6014 | >60F6 Start address for BLWP @GPLLNK
) ! .
i I)FFFC | Workspace Pointer for LOAD Ibnterrupt | I;Eg1g igggg gsLL:I g;llityrwurgiﬁgchﬁiigéer
‘3 ISFFFE | Start Address (PC) for LOAD Interrupt | 12001 ari address tor
i SFFFF |END OF HIGH MEMORY EXPARSION : >6020 »7092 KSCAN Utility workspace pointer
& | e ——————————— + >6022 | >6110 Start address for BLWP €KSCAN
3 e T 1>6024 | >7092 VSBW Utility workspace pointer
4 NOTE: When RORG (Relocatable Orign) DIS/FIX 80 files are E>5°23 >6126 Start address for BLWP @VSBW
0 loaded by the E/A Tagged Object Code Loader they are loaded | 1>6028 | >7092 VMBW Utility workspace pointer
¢ at >A000 by default. The loader looks at the value in >2024, 1>6024 | >6132 Start address for BLWP E€VMBHW
% . which contains >A000 at first, and loads the next word(s) 1>602C | >7092 VSBR Utility workspace pointer
i ding to this value I>602E | >6140 Start address for BLWP €VSBR
'y according ' [>6030 | >7092 VMBR Utility workspace pointer
i If the file contains any AORG directives the loader will |>603i >614C Start address for BLWP EVMBR
;- load the code where the programmer specified (i.e. AORG I>EU3 >ZU92 VWIR Utility workspace pointer
3 5C000) instead of where the pointer says to. Also, whith I>603g > 15; Start address for BLWP EVWIR
3 A0RG code this pointer at >2024 is not updated as the file 1>6038 | >7098 DSRLNK Utility workspace pointer
s is loaded. ' I>603A | >61E4 Start address for BLWP E@DSRLNK
A) 15603C | >70D8 LOADER Utility workspace pointer

gince the E/A Tagged Object Coode Loader resides in Low

I

: ;
| I
| |
I |
) I
: I
I I
| |
I I
I I
I I
| I
I |
| I
I I
I |
I |
| |
I I
|>603E | >62EC Start address for BLWP @LOADER |
I I
I |
| :
I |
I |
| I
| I
| I
I :
! a
i |
| I
| I
| I
I I
I I
I |
| |
I I
| i

) Memory Expansion, >23BA - »>2675, you can not use this loader I>6030 >EOFB NUMASG Utility workspace pointer

9 to load this area of memory since the loader will get wiped !>Gﬂuﬁ >660E Start address for BLWF @NUMASG

- 4 out. Also, since this loader uses other routihes in Low Mem | 1>60 >70F8 NUMREF Utility workspace pointer

¥ and other address for storage, it should not be used to load |>6046 | >66FE Start address for BLWP ENUMREF

52000 - >23B9 either, However, you can use the Mini Mem's | PGMB >TOF6 STRASG Utility workspace pointer

gl loader to load this area of memory since it's loader resides | 1>6044 | >6768 Start address for BLWP €STRASG

§ in the cartridge ROM and leaves ALL of Low and High Mem free I>2Uﬁc >Zggg STRREF Utility workspace pointer

1 for your programs. 1>604E | > Start address for BLWP @STRREF

ik 1>6050 | >70F8 ERR Dtility workspace pointer

8 If the file is a PROGRAM IMAGE type file the Program Loader I>605§ 6966 Start address for BLWF €ERR

built into the E/A module (5 RUN PROGRAM FILE) loads the 120055 1 20004 paratlon

-4 fil1e back into the memory it was SAVED from with the SAVE | 2 052 >2000 Data >2000 (H20 and'H:fUGU)

Utility. This loader is written in GPL code and reside; :;2329 ;gg gii: I;ggimal Point °.
|4 ?{intlirtfe]f figet?'er; 211:‘“3;}?%’:?2;5“ also Jeaves ALL of Low an {>605A | Start of Name Link routine.

o g) I>60BC | Routine to Return to Assembly Language from GPLLNK
q 1>560C8 ! Start of XMLLNK Routine. (Link to sys Utilities)
o {>60F6 | Start of GPLLNK Routine. (Link to GPL Routines)
5 3 16110 | Start of KSCAN Routine., (Keyboard Scan)

o | 1>6126 | Start of VSBW - Routine. (VDP single byte write)

Mini Memory ROM >6000->6FFF Contipued Mini Memory RAM >7000 - >7FFF - After INIT
e e e e e e e S A o P . L e Sl G S L S 05 2 + +-----‘----‘-‘-"-"’"--‘-"-‘-""'-""-""'-"'—---'-'—--"—-'--—---————-———————————-I-
1>6132 | Start of VMBW Hnut%ne. (VDP multiple byte write)| 127000 | >A55A Indicates that INIT MINI MEM has been done |
i;ﬁ:ﬂg : EEZ;E Z? 3§gg 223?123' Eggg ;i?fizlzytitzei:;d) : }>7002 : >0000 Start of Identifiers passed by CALL LINKs |
- I
o St o I hestine. Cirtegor to Flosting) ISTO1E | SIEFF Last. Free address in Mini Memory Rom and |
; . | as ree address in Mini Memory H
1>61E4 | Start of DSRLNK Routine. {Link to DSR routines) I 5 ! | pointer to user's REFs and DEFs {hr2m>$g§F :
1562CA | Start of DIS/FIX 80 LOADER when comming from GPL | .] |UTLTAB !
1>62EC | Start of LOADER Routine. (Loads DIS/FIX 80 files) : X |>7020 | >0000 Default START address for program lcaded |
1>660E | Start of NUMASG Routine. (Basic Numeric Assignment X I>7022 | >A00C First Free address in High Memo
{366FE | Start of NUMREF Routine. (Basic Numeric Reference) | }>7024 | >FFEO Last Free address in High Memai? :
156768 | Start of STRASG Routine. (Basic String Assignment} | 1>7026 { >2000 First Free address in Low Memory !
156888 | Start of STRREF Routine. (Basic String Reference) | {>7028 | >3FFF Last Free address in Low Memory |
1>6966 | Start of ERR Routine. (Basic Error Message) | 1>7024 | >0000 Saved Checksum }
{>697E | Thru >6FOC Not Used A1l >0000 ! | [5>702C | >0000 Saved Pointer to FLAG byte in PAB (in VDP) |
! Can Be used in the Gram Kracker ; | |>T02E | >0000 Saved GPL return address |
IS6FOE | Start of Default Mini Memory REF Table I | I>7030 | »0000 Saved CRU base of Peripheral |
IS6FOE | UTLTAB >7020 Pointer to Utility Table - Low Mem| | 1>7032 | >0000 Saved Entry address of DSR !
|>6F16 | PAD >8300 Start address of Scratch Pad Ram | ! [>7034 | >0000 Saved Device Name Length |
i>F1E | GPLWS >83E0 GPL Workspace pointer I } 1>7036 | >0000 Saved Pointer to Device Name in PAB in VDP |
{>6F26 ! SOUND >B400 Location of the Sound Chip (port) | | |>7038 | >0000 Saved Version Number of DSR (i.e. >0001) :
JeEat | VDPSTA 58802 VP Read Status port L iarosa | Start of DEVICE WAME Butter o oot |
- ' ; ~ art o EVICE NAME Buffer
IS56F3E | VDPWD >8C00 VDP Write Byte port : i 1>7092 | Start of UTILITY Workspace Registers :
IS56FU6 | VDPWA >8C02 VDP Write (set) Address port |] 1>7098 | Start of DSRLNK Workspace Registers l
I>6FUE | SPCHRD >9000 Speech Read port | E | | >T0B8 | Start of USER Workspace Registers I
|)2F56 E SPCHWT >9300 ngEﬂE Write gu;bt aft : | >70D8 ! Start of LOADER Workspace Registers !
!iﬁggg i gggﬁﬁ ;gagg Gﬁﬁﬁﬁgzzz g:zd Agd?egirpnrt I E)TOFB i Start of Variable Storage area (temp data) |
i - i '
. } b
:;gggg E ggﬁgz ;gggg gizzigizz :i;tz ?gZi)piggress pnrt} | :>711B : First Free Address in Mini Mem Pointed to by >701C}|
| ; L !
' |
T | O O B anavoss ML Poutine 1 7T | Also Start of User REF/DEF Tavie o Y IO
_) art o ser able
|I>6F8E | KSCAN >6020 BLWP address Keyboard Scan E e e e e e O B e B € o e B B l
I>6F96 | VSBW >602h BLWP address VDP Single Byte Write|
|>6F9E | VMBW 6028 BLWP address VDP Multi Byte Write | NOTE: The Mini Memory Tagged Object Code Loader looks at
“.gFig ! Vﬁgg }2023 gtgg aggpess ggg Ei;‘]s}EBBEtERREEﬂ i the number of RELOCATABLE bytes (RORG) in the file and if
1>6F 1 ¥ >6U31@ address u. i Ty $DPE; I they will fit in Mini Mem it locads it there. Otherwiase it
s | Yol s Meita T VP Bl |t o (pomisie risa) o s Bia e s
i ; Y dejault.
I>6FC6 | LOADER >603C BLWP address DIS/FIX 80 LOADER : .
{>6FCE | GPLLNK >6018 BLWP address GPLLNK Routine E ;; If the f‘;lle nnnt_ains any AQORG (Absolute Origin) Code the
)56FD6 | NUMASG >6040 BLWP address Numeric Assignment loader will load it where the programmer specified (i.e.
I>6FDE | NUMREF >6044 BLWP address Rumeric Reference | AORG >2000). Also, since the Mini Mem Loader resides
IS6FE6 | STRASG >6048 BLWP address String Assignment | ¢ entirely in cartridge Rom and uses the Mini Mem Ram for
I>6FEE | STRREF >604C BLWP address String Reference ! ; temporary storage, it can load DIS/FIX 80 Tagged Object Code
[>6FF6 | ERR 6050 BLWP address Error Message | | anywhere in Low or High Mem according to the RORG and AORG
% directives in the file.

e - —

: 'i T
Appendix D - Common Equates and Subroutines

Common CPU ROM/RAM Equates

SN
Scan Keyboard (BL €SCAN)

}

Wh

.x\

Appendix b - Common Equates and Subroutines Continued

Common Subroutine (BLWP) Addresses and

Number of Data Words that follow them:

>000E SCAN

>0064 RESET Return to GPL with COND Bit Reset (0) }

>0070 NEXT Return to GPL without changing COND Bit]

>00CE SET Return to GPL with COND Bit Set (1) Name E/A Add XB Add MM Add _ No. Words

>8300 PAD Start of Scratch Pad Ram |

>8322 Return Error Code from Assembly back to GPL & POWER UP >0000 >0000 >0000 >0000

>834A FAC Floating Point and DSR useage ¢

>8356 NAMLEN Points to DSR Name Lenght Byte in PAB ¢ NUMASG n/a >2008 >6040 >0000

>8374 Keyboard no. to be scanned v

>8375 Key Code Returned by SCAN or KSCAN ” NUMREF n/a >200C >6044 >0000

>837C GPL Status Byte ¥

>83C2 Auto Sound, Auto Sprite and Quit Key flags f STRASG n/a >2010 >60U8 >0000

>83CY ISR Hook -~ User Interrupt Start Address

>83F6 R11 of GPL Workspace STRREF n/a >2014 >604C >0000
- >83E0 GPLWS GPL Workspace pointer

S8400 SOUND Sound Chip port XMLLNK >2104 »>2018 >601C >0001

>8800 VDPRD VDP Read Byte port | |

>8802 VDPSTA VDP Read Status Byte port % KSCAN >2108 >201C >6020 >0000

>8C00 VDPWD VDP Write Byte port |

>8C02 VDPWA VDP Write Address and Registers port g VOBW >210C >2020 >6024 >0000

>9000 SPCHRD Speech Read Byte port ? |

>9400 SPCHWD Speech Write Byte port : VMBW 22110 >2024 >6028 >0000

>9800 GRMRD Grom Read Byte port

>9802 GRMRA Crom Read Address port VSBR >2114 >2028 >602C >0000

>9C00 GRMWD Grom Write Byte port

>9C02 GRMWA Grom Write Address port | VMBR >2118 >202C >6030 >0000

Common YDP RAM Equates P VWTR 2211C >2030 >6034 >0000

>1000 Standard E/A PAB Location B ERR n/a >2034 >6050 >0000

>1080 Buffer for above PAB ¥

>1100 Second E/A PAB 5 GPLLNK >2100 n/a >6018 >0001

>1180 Buffer for second PAB .

51200 Third E/A PAB | DSRLNK >2120 n/a >6038 >0001

>1280 Buffer for third PAB -

>1300 Fourth E/A PAB (for COPY directives) % LOADER >2124 n/a >603C >0000

>1380 Buffer for fourth PAB and for PROGRAM files l_

T NOTE: The E/A's NUMASG, NUMREF, STRASG, STRREF and ERR
| subroutines are in the file called BSCSUP on the E/A disk.
This file is an RORG file s0 their addresses are
relocatible and vary according to where the file is loaded.

vV @ M—-

53

I T T R g e LT,
- ' - - =

1
]
|
__.'

MILLERS GRAPHICS - LIMITED WARRANTY

Millers Graphics warrants the DISKkASSEMBLER program, which
it manufactures, to be free from defects in materials and
workmanship for a period of 90 days from the date of
purchase.

During the 90 day warranty period Millers Graphics will
replace any defective products at no additional charge,
provided the product is returned, shipping prepaid to
Millers Graphics. The Purchaser is responsible for insuring
any product so returned and assumes the risk of loss during
shipping.
Ship to:
Millers Graphics
1475 W. Cypress Ave.
San Dimas, California 91773

WARRANTY COVERAGE - This DISkKASSEMBLER program is warranted
against defective material and workmanship. THIS WARRANTY IS
VOID IF THE PRODUCT HAS BEEN DAMAGED BY ACCIDENT,
UNREASONABLE USE, NEGLECT, TAMPERING, IMPROPER SERVICE OR
OTHER CAUSES NOT ARISING QUT OF DEFECTS IN MATERIALS OR
WORKMANSHIP. .

WARRANTY DISCLAIMERS - ANY IMPLIED WARRANTIES ARISING QUT COF
THIS SALE, INCLUDING, BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION TO THE ABOVE 90 DAY PERIOD.
MILLERS GRAPHICS. SHALL NOT BE LIABLE FOR LOSS bR USE OF THE
SOFTWARE OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,
EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER
USE.

Some states do not allow the exclusion or limitation of
implied warranties or consequential damages, so the above
limitations or exclusion may not apply to you in those
states.

LEGAL REMEDIES - This warranty gives you specific legal
rights, and you may also have other rights that vary from
state to state. ’

REPLACEMENT AFTER WARRANTY - After the 90 Warranty period
has expired you may return any original defective diskette,
along with a check for 4,00 to cover shipping and diskette
costs, and we will replace it.

| 2 i P bt A S g, bl ey e ', St - -
L

